Suppr超能文献

转录组和代谢组的综合分析阐明了由……介导的植物根系耐盐分子调控机制。 (注:原文中“Mediated by.”部分内容缺失,翻译可能不完全准确)

Comprehensive Analysis of Transcriptome and Metabolome Elucidates the Molecular Regulatory Mechanism of Salt Resistance in Roots of Mediated by .

作者信息

Wang Chao, Huang Rong, Wang Jianfeng, Jin Jie, Malik Kamran, Niu Xueli, Tang Rong, Hou Wenpeng, Cheng Chen, Liu Yinglong, Liu Jie

机构信息

State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Collaborative Innovation Center for Western Ecological Safety, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.

State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China.

出版信息

J Fungi (Basel). 2022 Oct 17;8(10):1092. doi: 10.3390/jof8101092.

Abstract

Salinization of soil is a major environmental risk factor to plant functions, leading to a reduction of productivity of crops and forage. , seed-borne endophytic fungi, establishes a mutualistic symbiotic relationship with and confers salt tolerance in the host plants. In this study, analysis of transcriptome and metabolome was used to explore the potential molecular mechanism underlying the salt-adaptation of roots mediated by . We found that played an important role in the gene expression of the host's roots and regulated multiple pathways involved in amino acid metabolism, carbohydrate metabolism, TCA cycle, secondary metabolism, and lipid metabolism in the roots of . Importantly, significantly induced the biological processes, including exocytosis, glycolytic process, fructose metabolic process, and potassium ion transport in roots of host plants at transcriptional levels, and altered the pathways, including inositol phosphate metabolism, galactose metabolism, starch, and sucrose metabolism at metabolite levels under NaCl stress. These findings provided insight into the molecular mechanism of salt resistance in roots of mediated by and could drive progress in the cultivation of new salt-resistance breeds with endophytes.

摘要

土壤盐碱化是影响植物功能的主要环境风险因素,会导致农作物和饲料产量下降。种子携带的内生真菌与[植物名称]建立互利共生关系,并赋予宿主植物耐盐性。在本研究中,通过转录组和代谢组分析来探索[内生真菌名称]介导的[植物名称]根系盐适应潜在分子机制。我们发现[内生真菌名称]在宿主根系基因表达中起重要作用,并调节了[植物名称]根系中涉及氨基酸代谢、碳水化合物代谢、三羧酸循环、次生代谢和脂质代谢的多个途径。重要的是,[内生真菌名称]在转录水平上显著诱导了宿主植物根系中的生物过程,包括胞吐作用、糖酵解过程、果糖代谢过程和钾离子转运,并在NaCl胁迫下的代谢物水平上改变了包括肌醇磷酸代谢、半乳糖代谢、淀粉和蔗糖代谢在内的途径。这些发现为[内生真菌名称]介导的[植物名称]根系抗盐分子机制提供了见解,并可能推动耐盐内生真菌新培育品种的研究进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819c/9605608/9e31563faac6/jof-08-01092-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验