Suppr超能文献

土壤宏基因组学当前面临的挑战与陷阱

Current Challenges and Pitfalls in Soil Metagenomics.

作者信息

Leite Marcio F A, van den Broek Sarah W E B, Kuramae Eiko E

机构信息

Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands.

Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, 3584 CS Utrecht, The Netherlands.

出版信息

Microorganisms. 2022 Sep 25;10(10):1900. doi: 10.3390/microorganisms10101900.

Abstract

Soil microbial communities are essential components of agroecological ecosystems that influence soil fertility, nutrient turnover, and plant productivity. Metagenomics data are increasingly easy to obtain, but studies of soil metagenomics face three key challenges: (1) accounting for soil physicochemical properties; (2) incorporating untreated controls; and (3) sharing data. Accounting for soil physicochemical properties is crucial for better understanding the changes in soil microbial community composition, mechanisms, and abundance. Untreated controls provide a good baseline to measure changes in soil microbial communities and separate treatment effects from random effects. Sharing data increases reproducibility and enables meta-analyses, which are important for investigating overall effects. To overcome these challenges, we suggest establishing standard guidelines for the design of experiments for studying soil metagenomics. Addressing these challenges will promote a better understanding of soil microbial community composition and function, which we can exploit to enhance soil quality, health, and fertility.

摘要

土壤微生物群落是农业生态系统的重要组成部分,影响着土壤肥力、养分周转和植物生产力。宏基因组学数据越来越容易获得,但土壤宏基因组学研究面临三个关键挑战:(1)考虑土壤理化性质;(2)纳入未处理的对照;(3)数据共享。考虑土壤理化性质对于更好地理解土壤微生物群落组成、机制和丰度的变化至关重要。未处理的对照为测量土壤微生物群落的变化以及将处理效应与随机效应区分开来提供了一个良好的基线。数据共享提高了可重复性,并使荟萃分析成为可能,这对于研究总体效应很重要。为了克服这些挑战,我们建议为研究土壤宏基因组学的实验设计制定标准指南。应对这些挑战将促进对土壤微生物群落组成和功能的更好理解,我们可以利用这些来提高土壤质量、健康状况和肥力。

相似文献

1
Current Challenges and Pitfalls in Soil Metagenomics.
Microorganisms. 2022 Sep 25;10(10):1900. doi: 10.3390/microorganisms10101900.
2
Soil microbial community responses to a decade of warming as revealed by comparative metagenomics.
Appl Environ Microbiol. 2014 Mar;80(5):1777-86. doi: 10.1128/AEM.03712-13. Epub 2013 Dec 27.
4
Comparative Metagenomics Reveals Enhanced Nutrient Cycling Potential after 2 Years of Biochar Amendment in a Tropical Oxisol.
Appl Environ Microbiol. 2019 May 16;85(11). doi: 10.1128/AEM.02957-18. Print 2019 Jun 1.
5
Resilience and Assemblage of Soil Microbiome in Response to Chemical Contamination Combined with Plant Growth.
Appl Environ Microbiol. 2019 Mar 6;85(6). doi: 10.1128/AEM.02523-18. Print 2019 Mar 15.
6
Long-Term Warming in Alaska Enlarges the Diazotrophic Community in Deep Soils.
mBio. 2019 Feb 26;10(1):e02521-18. doi: 10.1128/mBio.02521-18.
7
A metagenomic survey of forest soil microbial communities more than a decade after timber harvesting.
Sci Data. 2017 Jul 25;4:170092. doi: 10.1038/sdata.2017.92. eCollection 2017.
8
Changes in the Active, Dead, and Dormant Microbial Community Structure across a Pleistocene Permafrost Chronosequence.
Appl Environ Microbiol. 2019 Mar 22;85(7). doi: 10.1128/AEM.02646-18. Print 2019 Apr 1.
9
Complementary Metagenomic Approaches Improve Reconstruction of Microbial Diversity in a Forest Soil.
mSystems. 2020 Mar 10;5(2):e00768-19. doi: 10.1128/mSystems.00768-19.

引用本文的文献

1
The Impact and Determinants of Mountainous Topographical Factors on Soil Microbial Community Characteristics.
Microorganisms. 2023 Nov 28;11(12):2878. doi: 10.3390/microorganisms11122878.
2
Utilization of-Omic technologies in cold climate hydrocarbon bioremediation: a text-mining approach.
Front Microbiol. 2023 Jun 16;14:1113102. doi: 10.3389/fmicb.2023.1113102. eCollection 2023.
3
Interventions Change Soil Functions and the Mechanisms Controlling the Structure of Soil Microbial Communities.
Microorganisms. 2023 Jun 5;11(6):1502. doi: 10.3390/microorganisms11061502.

本文引用的文献

1
Potential of Meta-Omics to Provide Modern Microbial Indicators for Monitoring Soil Quality and Securing Food Production.
Front Microbiol. 2022 Jun 30;13:889788. doi: 10.3389/fmicb.2022.889788. eCollection 2022.
2
From diversity to complexity: Microbial networks in soils.
Soil Biol Biochem. 2022 Jun;169:108604. doi: 10.1016/j.soilbio.2022.108604.
3
Unearthing Shifts in Microbial Communities Across a Soil Disturbance Gradient.
Front Microbiol. 2022 May 24;13:781051. doi: 10.3389/fmicb.2022.781051. eCollection 2022.
4
Many researchers were not compliant with their published data sharing statement: a mixed-methods study.
J Clin Epidemiol. 2022 Oct;150:33-41. doi: 10.1016/j.jclinepi.2022.05.019. Epub 2022 May 30.
5
Eucalypt species drive rhizosphere bacterial and fungal community assembly but soil phosphorus availability rearranges the microbiome.
Sci Total Environ. 2022 Aug 25;836:155667. doi: 10.1016/j.scitotenv.2022.155667. Epub 2022 May 3.
6
Trends in Microbial Community Composition and Function by Soil Depth.
Microorganisms. 2022 Feb 28;10(3):540. doi: 10.3390/microorganisms10030540.
7
The Sequence Read Archive: a decade more of explosive growth.
Nucleic Acids Res. 2022 Jan 7;50(D1):D387-D390. doi: 10.1093/nar/gkab1053.
8
Diversity of archaea and niche preferences among putative ammonia-oxidizing Nitrososphaeria dominating across European arable soils.
Environ Microbiol. 2022 Jan;24(1):341-356. doi: 10.1111/1462-2920.15830. Epub 2021 Nov 18.
9
Rearranging the sugarcane holobiont via plant growth-promoting bacteria and nitrogen input.
Sci Total Environ. 2021 Dec 15;800:149493. doi: 10.1016/j.scitotenv.2021.149493. Epub 2021 Aug 9.
10
Can We Estimate Functionality of Soil Microbial Communities from Structure-Derived Predictions? A Reality Test in Agricultural Soils.
Microbiol Spectr. 2021 Sep 3;9(1):e0027821. doi: 10.1128/Spectrum.00278-21. Epub 2021 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验