Suppr超能文献

无细胞丝素蛋白生物材料策略通过生物活性分子的程序化释放促进原位软骨再生。

A Cell-Free Silk Fibroin Biomaterial Strategy Promotes In Situ Cartilage Regeneration Via Programmed Releases of Bioactive Molecules.

机构信息

International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing, 100191, China.

School of Materials Science and Engineering, Peking University, Beijing, 100871, China.

出版信息

Adv Healthc Mater. 2023 Jan;12(1):e2201588. doi: 10.1002/adhm.202201588. Epub 2022 Nov 7.

Abstract

In situ tissue regeneration using cell-free biofunctional scaffolds has been extensively studied as a promising alternative strategy to promote cartilage repair. In this study, a cartilage-biomimetic silk fibroin (SF)-based scaffold with controlled sequential release of two bioactive molecules is developed. Transforming growth factor-β1 (TGF-β1) is initially loaded onto the SF scaffolds by physical absorption, which are then successively functionalized with bone marrow mesenchymal stem cells (BMSCs)-specific-affinity peptide (E7) via gradient degradation coating of Silk fibroin Methacryloyl (SilMA)/Hyaluronic acid Methacryloyl (HAMA). Such SF-based scaffolds exhibit excellent structural stability and catilage-like mechanical properties, thus providing a desirable 3D microenvironment for cartilage reconstruction. Furthermore, rapid initial release of E7 during the first few days, followed by slow and sustained release of TGF-β1 for as long as few weeks, synergistically induced the recruitment of BMSCs and chondrogenic differentiation of them in vitro. Finally, in vivo studies indicate that the implantation of the biofunctional scaffold markedly promote in situ cartilage regeneration in a rabbit cartilage defect model. It is believed that this cartilage-biomimetic biofunctional SF-based scaffold with sequential controlled release of E7 and TGF-β1 may have a promising potential for improved cartilage tissue engineering.

摘要

使用无细胞生物功能支架进行原位组织再生已被广泛研究,作为促进软骨修复的一种很有前途的替代策略。在这项研究中,开发了一种具有控制顺序释放两种生物活性分子的软骨仿生丝素纤维(SF)支架。转化生长因子-β1(TGF-β1)最初通过物理吸收加载到 SF 支架上,然后通过 Silk fibroin Methacryloyl(SilMA)/Hyaluronic acid Methacryloyl(HAMA)的梯度降解涂层,将骨髓间充质干细胞(BMSC)特异性亲和肽(E7)相继功能化。基于 SF 的支架具有优异的结构稳定性和类软骨机械性能,因此为软骨重建提供了理想的 3D 微环境。此外,E7 在最初几天内快速初始释放,随后 TGF-β1 缓慢且持续释放长达数周,协同诱导 BMSC 的募集和它们的体外软骨分化。最后,体内研究表明,生物功能支架的植入显著促进了兔软骨缺损模型中的原位软骨再生。可以相信,这种具有顺序控制释放 E7 和 TGF-β1 的软骨仿生生物功能 SF 支架可能具有改善软骨组织工程的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验