Suppr超能文献

从非停滞核糖体-新生肽链复合物的结构中深入了解核糖体的功能。

Insights into the ribosome function from the structures of non-arrested ribosome-nascent chain complexes.

机构信息

Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.

Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.

出版信息

Nat Chem. 2023 Jan;15(1):143-153. doi: 10.1038/s41557-022-01073-1. Epub 2022 Oct 31.

Abstract

During protein synthesis, the growing polypeptide threads through the ribosomal exit tunnel and modulates ribosomal activity by itself or by sensing various small molecules, such as metabolites or antibiotics, appearing in the tunnel. While arrested ribosome-nascent chain complexes (RNCCs) have been extensively studied structurally, the lack of a simple procedure for the large-scale preparation of peptidyl-tRNAs, intermediates in polypeptide synthesis that carry the growing chain, means that little attention has been given to RNCCs representing functionally active states of the ribosome. Here we report the facile synthesis of stably linked peptidyl-tRNAs through a chemoenzymatic approach based on native chemical ligation and use them to determine several structures of RNCCs in the functional pre-attack state of the peptidyl transferase centre. These structures reveal that C-terminal parts of the growing peptides adopt the same uniform β-strand conformation stabilized by an intricate network of hydrogen bonds with the universally conserved 23S rRNA nucleotides, and explain how the ribosome synthesizes growing peptides containing various sequences with comparable efficiencies.

摘要

在蛋白质合成过程中,不断延伸的多肽链通过核糖体出口通道,通过自身或通过感应各种小分子(如代谢物或抗生素)来调节核糖体的活性,这些小分子出现在通道中。尽管被捕获的核糖体-新生肽链复合物(RNCC)在结构上已经得到了广泛的研究,但由于缺乏大规模制备肽酰-tRNA 的简单程序,而肽酰-tRNA 是多肽合成过程中的中间体,携带正在延伸的肽链,因此很少关注代表核糖体功能活性状态的 RNCC。在这里,我们通过基于天然化学连接的化学酶法报告了稳定连接的肽酰-tRNA 的简便合成,并使用它们来确定肽基转移酶中心功能前攻击状态下的几个 RNCC 结构。这些结构表明,延伸肽的 C 末端部分采用相同的统一β-折叠构象,由氢键与普遍保守的 23S rRNA 核苷酸形成复杂的网络稳定,解释了核糖体如何以相当的效率合成含有各种序列的延伸肽。

相似文献

1
Insights into the ribosome function from the structures of non-arrested ribosome-nascent chain complexes.
Nat Chem. 2023 Jan;15(1):143-153. doi: 10.1038/s41557-022-01073-1. Epub 2022 Oct 31.
2
Synthesis of Peptidyl-tRNA Mimics for Structural Biology Applications.
Acc Chem Res. 2023 Oct 3;56(19):2713-2725. doi: 10.1021/acs.accounts.3c00412. Epub 2023 Sep 20.
3
Critical 23S rRNA interactions for macrolide-dependent ribosome stalling on the ErmCL nascent peptide chain.
Nucleic Acids Res. 2017 Jun 20;45(11):6717-6728. doi: 10.1093/nar/gkx195.
6
On the use of the antibiotic chloramphenicol to target polypeptide chain mimics to the ribosomal exit tunnel.
Biochimie. 2013 Sep;95(9):1765-72. doi: 10.1016/j.biochi.2013.06.004. Epub 2013 Jun 14.
7
23S rRNA nucleotides in the peptidyl transferase center are essential for tryptophanase operon induction.
J Bacteriol. 2009 Jun;191(11):3445-50. doi: 10.1128/JB.00096-09. Epub 2009 Mar 27.
8
Macrolide-peptide conjugates as probes of the path of travel of the nascent peptides through the ribosome.
ACS Chem Biol. 2014 Nov 21;9(11):2621-31. doi: 10.1021/cb5003224. Epub 2014 Sep 22.

引用本文的文献

1
Why Sulfur is Important in Lincosamide Antibiotics.
Chem. 2025 Jul 10;11(7). doi: 10.1016/j.chempr.2025.102480. Epub 2025 Mar 7.
2
Mechanism of release factor-mediated peptidyl-tRNA hydrolysis on the ribosome.
Science. 2025 Jun 19;388(6753):eads9030. doi: 10.1126/science.ads9030.
3
A broad-spectrum lasso peptide antibiotic targeting the bacterial ribosome.
Nature. 2025 Apr;640(8060):1022-1030. doi: 10.1038/s41586-025-08723-7. Epub 2025 Mar 26.
4
A mini-hairpin shaped nascent peptide blocks translation termination by a distinct mechanism.
Nat Commun. 2025 Mar 8;16(1):2323. doi: 10.1038/s41467-025-57659-z.
5
Discovery of a fluorinated macrobicyclic antibiotic through chemical synthesis.
Nat Chem. 2025 Apr;17(4):582-589. doi: 10.1038/s41557-025-01738-7. Epub 2025 Mar 7.
6
The assembly factor Reh1 is released from the ribosome during its initial round of translation.
Nat Commun. 2025 Feb 3;16(1):1278. doi: 10.1038/s41467-025-55844-8.
7
Capturing eukaryotic ribosome dynamics in situ at high resolution.
Nat Struct Mol Biol. 2025 Apr;32(4):698-708. doi: 10.1038/s41594-024-01454-9. Epub 2025 Jan 9.
8
Rationally designed pooled CRISPRi-seq uncovers an inhibitor of bacterial peptidyl-tRNA hydrolase.
Cell Rep. 2024 Nov 26;43(11):114967. doi: 10.1016/j.celrep.2024.114967. Epub 2024 Nov 15.
9
Activity, structure, and diversity of Type II proline-rich antimicrobial peptides from insects.
EMBO Rep. 2024 Nov;25(11):5194-5211. doi: 10.1038/s44319-024-00277-5. Epub 2024 Oct 16.
10
A Broad Spectrum Lasso Peptide Antibiotic Targeting the Bacterial Ribosome.
Res Sq. 2024 Sep 16:rs.3.rs-5058118. doi: 10.21203/rs.3.rs-5058118/v1.

本文引用的文献

1
Drop-off-reinitiation triggered by EF-G-driven mistranslocation and its alleviation by EF-P.
Nucleic Acids Res. 2022 Mar 21;50(5):2736-2753. doi: 10.1093/nar/gkac068.
2
Structural basis for the context-specific action of the classic peptidyl transferase inhibitor chloramphenicol.
Nat Struct Mol Biol. 2022 Feb;29(2):152-161. doi: 10.1038/s41594-022-00720-y. Epub 2022 Feb 14.
3
Structural and mechanistic basis for translation inhibition by macrolide and ketolide antibiotics.
Nat Commun. 2021 Jul 22;12(1):4466. doi: 10.1038/s41467-021-24674-9.
4
Structure of Erm-modified 70S ribosome reveals the mechanism of macrolide resistance.
Nat Chem Biol. 2021 Apr;17(4):412-420. doi: 10.1038/s41589-020-00715-0. Epub 2021 Jan 18.
5
UCSF ChimeraX: Structure visualization for researchers, educators, and developers.
Protein Sci. 2021 Jan;30(1):70-82. doi: 10.1002/pro.3943. Epub 2020 Oct 22.
6
Cryo-EM of elongating ribosome with EF-Tu•GTP elucidates tRNA proofreading.
Nature. 2020 Aug;584(7822):640-645. doi: 10.1038/s41586-020-2447-x. Epub 2020 Jul 1.
7
Ornithine capture by a translating ribosome controls bacterial polyamine synthesis.
Nat Microbiol. 2020 Apr;5(4):554-561. doi: 10.1038/s41564-020-0669-1. Epub 2020 Feb 24.
8
Mutational characterization and mapping of the 70S ribosome active site.
Nucleic Acids Res. 2020 Mar 18;48(5):2777-2789. doi: 10.1093/nar/gkaa001.
9
Flexizyme-catalyzed synthesis of 3'-aminoacyl-NH-tRNAs.
Nucleic Acids Res. 2019 May 21;47(9):e54. doi: 10.1093/nar/gkz143.
10
tRNA 3'-amino-tailing for stable amino acid attachment.
RNA. 2018 Dec;24(12):1878-1885. doi: 10.1261/rna.068015.118. Epub 2018 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验