Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana.
Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana; National Institute for Bioprocessing Research and Training, Dublin, Ireland.
Biophys J. 2022 Dec 6;121(23):4505-4516. doi: 10.1016/j.bpj.2022.10.042. Epub 2022 Nov 2.
Insulin forms amyloid fibrils under slightly destabilizing conditions, and B-chain residues are thought to play an important role in insulin fibrillation. Here, pulsed hydrogen-deuterium exchange mass spectrometry (HDX-MS), far-UV circular dichroism spectroscopy, thioflavin T (ThioT) fluorescence, turbidity, and soluble fraction measurements were used to monitor the kinetics and mechanisms of fibrillation of human insulin B-chain (INSB) in acidic solution (1 mg/mL, pH 4.5) under stressed conditions (40°C, continuous shaking). Initially, INSB rapidly formed β-sheet-rich oligomers that were protected from HD exchange and showed weak ThioT binding. Subsequent fibril growth and maturation was accompanied by even greater protection from HD exchange and stronger ThioT binding. With peptic digestion of deuterated INSB, HDX-MS suggested early involvement of the N-terminal (1-11, 1-15) and central (12-15, 16-25) fragments in fibril-forming interactions, whereas the C-terminal fragment (25-30) showed limited involvement. The results provide mechanistic understanding of the intermolecular interactions and structural changes during INSB fibrillation under stressed conditions and demonstrate the application of pulsed HDX-MS to probe peptide fibrillation.
在稍微不稳定的条件下,胰岛素会形成淀粉样纤维,并且 B 链残基被认为在胰岛素纤维化中发挥重要作用。在这里,使用脉冲氢氘交换质谱 (HDX-MS)、远紫外圆二色光谱、硫黄素 T(ThioT)荧光、浊度和可溶性分数测量来监测人胰岛素 B 链(INSB)在酸性溶液中的纤维化动力学和机制。(1mg/mL,pH4.5)在应激条件下(40°C,连续搅拌)。最初,INSB 迅速形成富含β-折叠的寡聚物,这些寡聚物对 HD 交换具有保护作用,并且表现出较弱的 ThioT 结合。随后的纤维生长和成熟伴随着更大的 HD 交换保护和更强的 ThioT 结合。用胃蛋白酶消化氘化 INSB,HDX-MS 表明 N 端(1-11、1-15)和中心(12-15、16-25)片段早期参与纤维形成相互作用,而 C 端片段(25-30)显示出有限的参与。这些结果提供了对 INSB 在应激条件下纤维化过程中分子间相互作用和结构变化的机制理解,并证明了脉冲 HDX-MS 在探测肽纤维化中的应用。