Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
Curr Biol. 2022 Dec 19;32(24):5344-5353.e6. doi: 10.1016/j.cub.2022.10.024. Epub 2022 Nov 3.
In plants, nitrate is the dominant nitrogen (N) source and a critical nutrient signal regulating various physiological and developmental processes. Nitrate-responsive gene regulatory networks are widely believed to control growth, development, and life cycle in addition to N acquisition and utilization, and NIN-LIKE PROTEIN (NLP) transcriptional activators have been identified as the master regulators governing the networks. However, it remains to be elucidated how nitrate signaling regulates respective physiological and developmental processes. Here, we have identified a new nitrate-activated transcriptional cascade involved in chloroplast development and the maintenance of chloroplast function in Arabidopsis. This cascade consisting of NLP7 and two homeodomain-leucine zipper (HD-Zip) class I transcription factors, HOMEOBOX PROTEIN52 (HB52) and HB54, was responsible for nitrate- and light-dependent expression of VAR2 encoding the FtsH2 subunit of the chloroplast FtsH protease involved in the quality control of photodamaged thylakoid membrane proteins. Consistently, the nitrate-activated NLP7-HB52/54-VAR2 pathway underpinned photosynthetic light energy utilization, especially in high light environments. Furthermore, genetically enhancing the NLP7-HB52/54-VAR2 pathway resulted in improved light energy utilization under high light and low N conditions, a superior agronomic trait. These findings shed light on a new role of nitrate signaling and a novel mechanism for integrating information on N nutrient and light environments, providing a hint for enhancing the light energy utilization of plants in low N environments.
在植物中,硝酸盐是主要的氮(N)源,也是调节各种生理和发育过程的关键营养信号。硝酸盐响应基因调控网络被广泛认为除了氮的获取和利用之外,还控制着生长、发育和生命周期,并且已经鉴定出 NIN-LIKE PROTEIN(NLP)转录激活因子作为调控这些网络的主要调节剂。然而,硝酸盐信号如何调节各自的生理和发育过程仍有待阐明。在这里,我们已经鉴定出一个新的硝酸盐激活的转录级联反应,涉及到叶绿体发育和叶绿体功能的维持。这个级联反应由 NLP7 和两个同源域-亮氨酸拉链(HD-Zip)I 类转录因子,HOMEBOX PROTEIN52(HB52)和 HB54 组成,负责硝酸盐和光照依赖的 VAR2 的表达,VAR2 编码叶绿体 FtsH 蛋白酶的 FtsH2 亚基,该蛋白酶参与光损伤类囊体膜蛋白的质量控制。一致地,硝酸盐激活的 NLP7-HB52/54-VAR2 途径支撑着光合作用光能的利用,特别是在高光环境下。此外,通过遗传增强 NLP7-HB52/54-VAR2 途径,在高光和低氮条件下提高了光能的利用,这是一种优良的农艺性状。这些发现揭示了硝酸盐信号的新作用和整合氮营养和光照环境信息的新机制,为提高植物在低氮环境下的光能利用提供了线索。