Suppr超能文献

基于脑电图的癫痫发作检测的图生成神经网络,通过发现动态脑功能连接。

Graph-generative neural network for EEG-based epileptic seizure detection via discovery of dynamic brain functional connectivity.

机构信息

The School of Data Science, Chinese University of Hong Kong, Shenzhen, China.

Shenzhen Institute for Artificial Intelligence and Robotics for Society (AIRS), Shenzhen, China.

出版信息

Sci Rep. 2022 Nov 8;12(1):18998. doi: 10.1038/s41598-022-23656-1.

Abstract

Dynamic complexity in brain functional connectivity has hindered the effective use of signal processing or machine learning methods to diagnose neurological disorders such as epilepsy. This paper proposed a new graph-generative neural network (GGN) model for the dynamic discovery of brain functional connectivity via deep analysis of scalp electroencephalogram (EEG) signals recorded from various regions of a patient's scalp. Brain functional connectivity graphs are generated for the extraction of spatial-temporal resolution of various onset epilepsy seizure patterns. Our supervised GGN model was substantiated by seizure detection and classification experiments. We train the GGN model using a clinically proven dataset of over 3047 epileptic seizure cases. The GGN model achieved a 91% accuracy in classifying seven types of epileptic seizure attacks, which outperformed the 65%, 74%, and 82% accuracy in using the convolutional neural network (CNN), graph neural networks (GNN), and transformer models, respectively. We present the GGN model architecture and operational steps to assist neuroscientists or brain specialists in using dynamic functional connectivity information to detect neurological disorders. Furthermore, we suggest to merge our spatial-temporal graph generator design in upgrading the conventional CNN and GNN models with dynamic convolutional kernels for accuracy enhancement.

摘要

大脑功能连接的动态复杂性阻碍了信号处理或机器学习方法在诊断癫痫等神经疾病方面的有效应用。本文提出了一种新的图生成神经网络(GGN)模型,通过对从患者头皮各个区域记录的头皮脑电图(EEG)信号进行深度分析,用于动态发现大脑功能连接。生成大脑功能连接图以提取各种起始癫痫发作模式的时空分辨率。我们的监督 GGN 模型通过癫痫发作检测和分类实验得到了证实。我们使用经过临床验证的超过 3047 例癫痫发作病例的数据集来训练 GGN 模型。GGN 模型在对七种类型的癫痫发作进行分类时的准确率达到了 91%,优于使用卷积神经网络(CNN)、图神经网络(GNN)和变压器模型时的 65%、74%和 82%的准确率。我们介绍了 GGN 模型架构和操作步骤,以帮助神经科学家或脑科专家利用动态功能连接信息检测神经疾病。此外,我们建议将我们的时空图生成器设计与动态卷积核合并,以提升传统 CNN 和 GNN 模型的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d245/9643358/5bd07af8053b/41598_2022_23656_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验