Suppr超能文献

精子染色质结构的功能方面。

Functional Aspects of Sperm Chromatin Organization.

机构信息

Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, Faculty of Sciences, University of Girona, Girona, Spain.

Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain.

出版信息

Results Probl Cell Differ. 2022;70:295-311. doi: 10.1007/978-3-031-06573-6_10.

Abstract

Sperm nuclei present a highly organized and condensed chromatin due to the interchange of histones by protamines during spermiogenesis. This high DNA condensation leads to almost inert chromatin, with the impossibility of conducting gene transcription as in most other somatic cells. The major chromosomal structure responsible for DNA condensation is the formation of protamine-DNA toroids containing 25-50 kilobases of DNA. These toroids are connected by toroid linker regions (TLR), which attach them to the nuclear matrix, as matrix attachment regions (MAR) do in somatic cells. Despite this high degree of condensation, evidence shows that sperm chromatin contains vulnerable elements that can be degraded even in fully condensed chromatin, which may correspond to chromatin regions that transfer functionality to the zygote at fertilization. This chapter covers an updated review of our model for sperm chromatin structure and its potential functional elements that affect embryo development.

摘要

精子核由于在精子发生过程中组蛋白被鱼精蛋白交换而呈现出高度组织化和浓缩的染色质。这种高 DNA 浓缩导致染色质几乎处于惰性状态,不可能像大多数其他体细胞那样进行基因转录。负责 DNA 浓缩的主要染色体结构是形成包含 25-50 千碱基对 DNA 的鱼精蛋白-DNA 环。这些环通过环连接区 (TLR) 连接,就像体细胞中的基质附着区 (MAR) 一样将它们附着到核基质上。尽管这种高度浓缩,但有证据表明,精子染色质含有易损元件,即使在完全浓缩的染色质中也可能被降解,这可能对应于在受精时将功能转移到受精卵的染色质区域。本章涵盖了我们对精子染色质结构及其影响胚胎发育的潜在功能元件的最新模型的综述。

相似文献

1
Functional Aspects of Sperm Chromatin Organization.
Results Probl Cell Differ. 2022;70:295-311. doi: 10.1007/978-3-031-06573-6_10.
2
Ability of hamster spermatozoa to digest their own DNA.
Biol Reprod. 2003 Dec;69(6):2029-35. doi: 10.1095/biolreprod.103.020594. Epub 2003 Aug 20.
3
Sperm chromatin.
Arch Androl. 2000 Nov-Dec;45(3):215-25. doi: 10.1080/01485010050193995.
4
Function of sperm chromatin structural elements in fertilization and development.
Mol Hum Reprod. 2010 Jan;16(1):30-6. doi: 10.1093/molehr/gap080. Epub 2009 Sep 11.
5
Comparative structure of vertebrate sperm chromatin.
J Struct Biol. 2014 Nov;188(2):142-55. doi: 10.1016/j.jsb.2014.09.004. Epub 2014 Sep 27.
6
Sperm chromatin protamination: an endocrine perspective.
Protein Pept Lett. 2011 Aug;18(8):786-801. doi: 10.2174/092986611795714005.
9
Loss of the cleaved-protamine 2 domain leads to incomplete histone-to-protamine exchange and infertility in mice.
PLoS Genet. 2022 Jun 28;18(6):e1010272. doi: 10.1371/journal.pgen.1010272. eCollection 2022 Jun.
10
Complex chromatin condensation patterns and nuclear protein transitions during spermiogenesis: examples from mollusks.
Tissue Cell. 2011 Dec;43(6):367-76. doi: 10.1016/j.tice.2011.08.001. Epub 2011 Sep 19.

引用本文的文献

1
Hurdles of Sperm Success: Exploring the Role of DNases.
Int J Mol Sci. 2025 Jul 15;26(14):6789. doi: 10.3390/ijms26146789.
2
Protective role of extracellular vesicles against oxidative DNA damage.
Biol Res. 2025 Mar 13;58(1):14. doi: 10.1186/s40659-025-00595-5.
3
Editorial: Insights in DNA fragmentation.
Front Endocrinol (Lausanne). 2025 Feb 24;16:1570774. doi: 10.3389/fendo.2025.1570774. eCollection 2025.
4
Argonaute CSR-1A promotes H3K9me3 maintenance to protect somatic development in offspring.
Nucleic Acids Res. 2025 Feb 27;53(5). doi: 10.1093/nar/gkaf127.
5
Silent cells? Potential for context-dependent gene expression in mature sperm.
Proc Biol Sci. 2025 Jan;292(2038):20241516. doi: 10.1098/rspb.2024.1516. Epub 2025 Jan 8.
7
Epigenetic transgenerational inheritance of toxicant exposure-specific non-coding RNA in sperm.
Environ Epigenet. 2024 Sep 4;10(1):dvae014. doi: 10.1093/eep/dvae014. eCollection 2024.

本文引用的文献

1
Impact of Oxidative Stress on Male Reproduction in Domestic and Wild Animals.
Antioxidants (Basel). 2021 Jul 20;10(7):1154. doi: 10.3390/antiox10071154.
3
Sperm selection during ICSI treatments reduces single- but not double-strand DNA break values compared to the semen sample.
J Assist Reprod Genet. 2021 May;38(5):1187-1196. doi: 10.1007/s10815-021-02129-w. Epub 2021 Mar 4.
4
Clinical implications of sperm DNA damage in IVF and ICSI: updated systematic review and meta-analysis.
Biol Rev Camb Philos Soc. 2021 Aug;96(4):1284-1300. doi: 10.1111/brv.12700. Epub 2021 Mar 1.
5
Inferring time series chromatin states for promoter-enhancer pairs based on Hi-C data.
BMC Genomics. 2021 Jan 28;22(1):84. doi: 10.1186/s12864-021-07373-z.
6
The sperm centrioles.
Mol Cell Endocrinol. 2020 Dec 1;518:110987. doi: 10.1016/j.mce.2020.110987. Epub 2020 Aug 15.
7
The Impact of Single- and Double-Strand DNA Breaks in Human Spermatozoa on Assisted Reproduction.
Int J Mol Sci. 2020 May 29;21(11):3882. doi: 10.3390/ijms21113882.
9
Organization of Chromatin by Intrinsic and Regulated Phase Separation.
Cell. 2019 Oct 3;179(2):470-484.e21. doi: 10.1016/j.cell.2019.08.037. Epub 2019 Sep 19.
10
Mapping of scaffold/matrix attachment regions in human genome: a data mining exercise.
Nucleic Acids Res. 2019 Aug 22;47(14):7247-7261. doi: 10.1093/nar/gkz562.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验