Department of Physics and Engineering, Francis Marion University, Florence, SC 29506, USA.
Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA.
Sensors (Basel). 2022 Nov 1;22(21):8398. doi: 10.3390/s22218398.
Inertial measurement units (IMUs) offer an attractive way to study human lower-limb kinematics without traditional laboratory constraints. We present an error-state Kalman filter method to estimate 3D joint angles, joint angle ranges of motion, stride length, and step width using data from an array of seven body-worn IMUs. Importantly, this paper contributes a novel joint axis measurement correction that reduces joint angle drift errors without assumptions of strict hinge-like joint behaviors of the hip and knee. We evaluate the method compared to two optical motion capture methods on twenty human subjects performing six different types of walking gait consisting of forward walking (at three speeds), backward walking, and lateral walking (left and right). For all gaits, RMS differences in joint angle estimates generally remain below 5 degrees for all three ankle joint angles and for flexion/extension and abduction/adduction of the hips and knees when compared to estimates from reflective markers on the IMUs. Additionally, mean RMS differences in estimated stride length and step width remain below 0.13 m for all gait types, except stride length during slow walking. This study confirms the method's potential for non-laboratory based gait analysis, motivating further evaluation with IMU-only measurements and pathological gaits.
惯性测量单元 (IMU) 提供了一种有吸引力的方法,可以在没有传统实验室限制的情况下研究人体下肢运动学。我们提出了一种误差状态卡尔曼滤波方法,使用来自七个佩戴在身体上的 IMU 阵列的数据来估计 3D 关节角度、关节角度运动范围、步长和步宽。重要的是,本文提出了一种新的关节轴测量校正方法,可减少关节角度漂移误差,而无需假设髋关节和膝关节具有严格的铰链式关节行为。我们将该方法与两种光学运动捕捉方法进行了评估,共有二十名受试者进行了六种不同类型的步行步态,包括向前走(三种速度)、向后走和侧向走(左右)。对于所有步态,与 IMU 上的反射标记相比,所有三个踝关节角度以及髋关节和膝关节的屈伸和外展/内收的关节角度估计的 RMS 差异通常都低于 5 度。此外,除了慢走时的步长外,所有步态类型的估计步长和步宽的平均 RMS 差异仍低于 0.13m。这项研究证实了该方法在非实验室基础步态分析中的潜力,激励了仅使用 IMU 测量和病理性步态的进一步评估。