Suppr超能文献

用于合成单分散且序列编码抗体寡聚体的模块化核酸支架

Modular Nucleic Acid Scaffolds for Synthesizing Monodisperse and Sequence-Encoded Antibody Oligomers.

作者信息

Winegar Peter H, Figg C Adrian, Teplensky Michelle H, Ramani Namrata, Mirkin Chad A

机构信息

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.

International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.

出版信息

Chem. 2022 Nov 10;8(11):3018-3030. doi: 10.1016/j.chempr.2022.07.003. Epub 2022 Aug 5.

Abstract

Synthesizing protein oligomers that contain exact numbers of multiple different proteins in defined architectures is challenging. DNA-DNA interactions can be used to program protein assembly into oligomers; however, existing methods require changes to DNA design to achieve different numbers and oligomeric sequences of proteins. Herein, we develop a modular DNA scaffold that uses only six synthetic oligonucleotides to organize proteins into defined oligomers. As a proof-of-concept, model proteins (antibodies) are oligomerized into dimers and trimers, where antibody function is retained. Illustrating the modularity of this technique, dimer and trimer building blocks are then assembled into pentamers containing three different antibodies in an exact stoichiometry and oligomeric sequence. In sum, this report describes a generalizable method for organizing proteins into monodisperse, sequence-encoded oligomers using DNA. This advance will enable studies into how oligomeric protein sequences affect material properties in areas spanning pharmaceutical development, cascade catalysis, synthetic photosynthesis, and membrane transport.

摘要

合成在特定结构中包含精确数量的多种不同蛋白质的蛋白质寡聚体具有挑战性。DNA-DNA相互作用可用于将蛋白质组装编程为寡聚体;然而,现有方法需要改变DNA设计以实现不同数量和寡聚序列的蛋白质。在此,我们开发了一种模块化DNA支架,仅使用六种合成寡核苷酸就可将蛋白质组织成特定的寡聚体。作为概念验证,模型蛋白(抗体)被寡聚成二聚体和三聚体,其中抗体功能得以保留。为说明该技术的模块化,二聚体和三聚体构建模块随后被组装成五聚体,其中包含三种不同的抗体,具有精确的化学计量和寡聚序列。总之,本报告描述了一种使用DNA将蛋白质组织成单分散、序列编码寡聚体的通用方法。这一进展将有助于研究寡聚蛋白质序列如何在药物开发、级联催化、合成光合作用和膜运输等领域影响材料特性。

相似文献

1
Modular Nucleic Acid Scaffolds for Synthesizing Monodisperse and Sequence-Encoded Antibody Oligomers.
Chem. 2022 Nov 10;8(11):3018-3030. doi: 10.1016/j.chempr.2022.07.003. Epub 2022 Aug 5.
2
AFM Probing of Amyloid-Beta 42 Dimers and Trimers.
Front Mol Biosci. 2020 Apr 24;7:69. doi: 10.3389/fmolb.2020.00069. eCollection 2020.
3
Engineering Exciton Dynamics with Synthetic DNA Scaffolds.
Acc Chem Res. 2023 Aug 1;56(15):2051-2061. doi: 10.1021/acs.accounts.3c00086. Epub 2023 Jun 22.
4
An autonomous molecular assembler for programmable chemical synthesis.
Nat Chem. 2016 Jun;8(6):542-8. doi: 10.1038/nchem.2495. Epub 2016 Apr 11.
5
Protein Materials Engineering with DNA.
Acc Chem Res. 2019 Jul 16;52(7):1939-1948. doi: 10.1021/acs.accounts.9b00165. Epub 2019 Jun 14.
6
Homogeneous Synthesis of Monodisperse Sequence-Defined Conjugated Oligomers by Temperature Cycling.
Angew Chem Int Ed Engl. 2022 Sep 26;61(39):e202210340. doi: 10.1002/anie.202210340. Epub 2022 Aug 23.
7
Directed assembly of defined oligomeric photosynthetic reaction centres through adaptation with programmable extra-membrane coiled-coil interfaces.
Biochim Biophys Acta. 2016 Dec;1857(12):1829-1839. doi: 10.1016/j.bbabio.2016.09.002. Epub 2016 Sep 7.
9
Nucleic acid-based scaffold systems and application in enzyme cascade catalysis.
Appl Microbiol Biotechnol. 2023 Jan;107(1):9-23. doi: 10.1007/s00253-022-12315-0. Epub 2022 Dec 2.
10
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.

引用本文的文献

1
The emerging era of structural nanomedicine.
Nat Rev Bioeng. 2025 Jul;3(7):526-528. doi: 10.1038/s44222-025-00306-5. Epub 2025 Apr 25.
2
Blueprints for Better Drugs: The Structural Revolution in Nanomedicine.
ACS Nano. 2025 May 27;19(20):18889-18901. doi: 10.1021/acsnano.5c06380. Epub 2025 May 13.
3
DNA-Regulated Multi-Protein Complement Control.
J Am Chem Soc. 2024 Dec 4;146(48):32912-32918. doi: 10.1021/jacs.4c11315. Epub 2024 Nov 21.

本文引用的文献

1
Deciphering protein post-translational modifications using chemical biology tools.
Nat Rev Chem. 2020 Dec;4(12):674-695. doi: 10.1038/s41570-020-00223-8. Epub 2020 Oct 6.
2
The renaissance of chemically generated bispecific antibodies.
Nat Rev Chem. 2021 Feb;5(2):78-92. doi: 10.1038/s41570-020-00241-6. Epub 2021 Jan 19.
3
Designed protein multimerization and polymerization for functionalization of proteins.
Biotechnol Lett. 2022 Mar;44(3):341-365. doi: 10.1007/s10529-021-03217-8. Epub 2022 Jan 27.
4
Reconfigurable asymmetric protein assemblies through implicit negative design.
Science. 2022 Jan 21;375(6578):eabj7662. doi: 10.1126/science.abj7662.
5
Antigen-Triggered Logic-Gating of DNA Nanodevices.
J Am Chem Soc. 2021 Dec 29;143(51):21630-21636. doi: 10.1021/jacs.1c09967. Epub 2021 Dec 20.
6
Encoding hierarchical assembly pathways of proteins with DNA.
Proc Natl Acad Sci U S A. 2021 Oct 5;118(40). doi: 10.1073/pnas.2106808118. Epub 2021 Sep 30.
7
Protein Assembly by Design.
Chem Rev. 2021 Nov 24;121(22):13701-13796. doi: 10.1021/acs.chemrev.1c00308. Epub 2021 Aug 18.
8
Synthesis of Multi-Protein Complexes through Charge-Directed Sequential Activation of Tyrosine Residues.
J Am Chem Soc. 2021 Sep 1;143(34):13538-13547. doi: 10.1021/jacs.1c03079. Epub 2021 Aug 12.
9
Designed and biologically active protein lattices.
Nat Commun. 2021 Jun 17;12(1):3702. doi: 10.1038/s41467-021-23966-4.
10
Redefining Protein Interfaces within Protein Single Crystals with DNA.
J Am Chem Soc. 2021 Jun 16;143(23):8925-8934. doi: 10.1021/jacs.1c04191. Epub 2021 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验