Suppr超能文献

基质粘弹性控制时空组织。

Matrix viscoelasticity controls spatiotemporal tissue organization.

机构信息

Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.

Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA.

出版信息

Nat Mater. 2023 Jan;22(1):117-127. doi: 10.1038/s41563-022-01400-4. Epub 2022 Dec 1.

Abstract

Biomolecular and physical cues of the extracellular matrix environment regulate collective cell dynamics and tissue patterning. Nonetheless, how the viscoelastic properties of the matrix regulate collective cell spatial and temporal organization is not fully understood. Here we show that the passive viscoelastic properties of the matrix encapsulating a spheroidal tissue of breast epithelial cells guide tissue proliferation in space and in time. Matrix viscoelasticity prompts symmetry breaking of the spheroid, leading to the formation of invading finger-like protrusions, YAP nuclear translocation and epithelial-to-mesenchymal transition both in vitro and in vivo in a Arp2/3-complex-dependent manner. Computational modelling of these observations allows us to establish a phase diagram relating morphological stability with matrix viscoelasticity, tissue viscosity, cell motility and cell division rate, which is experimentally validated by biochemical assays and in vitro experiments with an intestinal organoid. Altogether, this work highlights the role of stress relaxation mechanisms in tissue growth dynamics, a fundamental process in morphogenesis and oncogenesis.

摘要

细胞外基质环境的生物分子和物理线索调节细胞的集体动力学和组织模式。然而,基质的粘弹性如何调节细胞的集体空间和时间组织还不完全清楚。在这里,我们表明,包裹着乳腺上皮细胞球形组织的基质的被动粘弹性特性指导组织在空间和时间上的增殖。基质的粘弹性促使球体的对称性破裂,导致形成侵入性的指状突起,YAP 核易位,并在体外和体内以 Arp2/3 复合物依赖性的方式发生上皮-间充质转化。对这些观察结果的计算模型使我们能够建立一个与形态稳定性相关的相图,该相图与基质粘弹性、组织粘度、细胞迁移率和细胞分裂率有关,通过生化分析和具有肠类器官的体外实验进行了实验验证。总的来说,这项工作强调了在组织生长动力学中,应力松弛机制在形态发生和癌变中的重要作用。

相似文献

1
Matrix viscoelasticity controls spatiotemporal tissue organization.
Nat Mater. 2023 Jan;22(1):117-127. doi: 10.1038/s41563-022-01400-4. Epub 2022 Dec 1.
2
Myofibers cultured in viscoelastic hydrogels reveal the effects of integrin-binding and mechanosensing on muscle satellite cells.
Acta Biomater. 2025 Jan 15;192:48-60. doi: 10.1016/j.actbio.2024.11.044. Epub 2024 Nov 28.
4
T-bet expressing Tr1 cells driven by dietary signals dominate the small intestinal immune landscape.
bioRxiv. 2025 Jul 4:2025.06.30.662190. doi: 10.1101/2025.06.30.662190.
7
Stress relaxation rates of myocardium from failing and non-failing hearts.
Biomech Model Mechanobiol. 2025 Feb;24(1):265-280. doi: 10.1007/s10237-024-01909-4. Epub 2024 Dec 31.
9
Monocytes use protrusive forces to generate migration paths in viscoelastic collagen-based extracellular matrices.
Proc Natl Acad Sci U S A. 2025 Jun 24;122(25):e2309772122. doi: 10.1073/pnas.2309772122. Epub 2025 Jun 16.

引用本文的文献

2
Advanced cell-adaptable hydrogels for bioprinting.
Bioact Mater. 2025 Aug 6;53:831-854. doi: 10.1016/j.bioactmat.2025.07.044. eCollection 2025 Nov.
3
Fully Synthetic Hydrogels Promote Robust Crypt Formation in Intestinal Organoids.
Adv Mater. 2025 Aug 15:e09672. doi: 10.1002/adma.202509672.
5
Bio-orthogonally double cross-linked alginate-gelatin hydrogels with tunable viscoelasticity for cardiac tissue engineering.
Mater Today Bio. 2025 Jul 22;34:102121. doi: 10.1016/j.mtbio.2025.102121. eCollection 2025 Oct.
7
Organoid bioprinting to pattern the matrix microenvironment.
Curr Opin Biomed Eng. 2025 Sep;35. doi: 10.1016/j.cobme.2025.100607. Epub 2025 Jun 5.
8
The Mechanical Role of YAP/TAZ in the Development of Diabetic Cardiomyopathy.
Curr Issues Mol Biol. 2025 Apr 23;47(5):297. doi: 10.3390/cimb47050297.
9
Mechanobiological engineering strategies for organoid culture.
APL Bioeng. 2025 Jul 18;9(3):031501. doi: 10.1063/5.0275439. eCollection 2025 Sep.
10
Extracellular Matrix Signaling Cues: Biological Functions, Diseases, and Therapeutic Targets.
MedComm (2020). 2025 Jul 17;6(8):e70281. doi: 10.1002/mco2.70281. eCollection 2025 Aug.

本文引用的文献

1
The extracellular matrix viscoelasticity as a regulator of cell and tissue dynamics.
Curr Opin Cell Biol. 2021 Oct;72:10-18. doi: 10.1016/j.ceb.2021.04.002. Epub 2021 May 13.
3
Cell swelling, softening and invasion in a three-dimensional breast cancer model.
Nat Phys. 2020 Jan;16(1):101-108. doi: 10.1038/s41567-019-0680-8. Epub 2019 Oct 21.
4
Effects of extracellular matrix viscoelasticity on cellular behaviour.
Nature. 2020 Aug;584(7822):535-546. doi: 10.1038/s41586-020-2612-2. Epub 2020 Aug 26.
5
3D Microenvironment Stiffness Regulates Tumor Spheroid Growth and Mechanics via p21 and ROCK.
Adv Biosyst. 2019 Sep;3(9):e1900128. doi: 10.1002/adbi.201900128. Epub 2019 Jul 24.
6
An in vitro model of early anteroposterior organization during human development.
Nature. 2020 Jun;582(7812):410-415. doi: 10.1038/s41586-020-2383-9. Epub 2020 Jun 11.
7
Guidelines and definitions for research on epithelial-mesenchymal transition.
Nat Rev Mol Cell Biol. 2020 Jun;21(6):341-352. doi: 10.1038/s41580-020-0237-9. Epub 2020 Apr 16.
8
How tissue fluidity influences brain tumor progression.
Proc Natl Acad Sci U S A. 2020 Jan 7;117(1):128-134. doi: 10.1073/pnas.1913511116. Epub 2019 Dec 16.
9
Tissue Fluidity Promotes Epithelial Wound Healing.
Nat Phys. 2019 Jul 4;15(11):1195-1203. doi: 10.1038/s41567-019-0618-1. Epub 2019 Aug 12.
10
Tomoelastography Distinguishes Noninvasively between Benign and Malignant Liver Lesions.
Cancer Res. 2019 Nov 15;79(22):5704-5710. doi: 10.1158/0008-5472.CAN-19-2150. Epub 2019 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验