Suppr超能文献

单细胞 RNA 测序数据中潜在变量估计后的推断。

Inference after latent variable estimation for single-cell RNA sequencing data.

机构信息

Department of Statistics, University of Washington, Seattle, WA 98195, USA.

Department of Statistics, University of British Columbia, BC V6T 1Z4, Canada.

出版信息

Biostatistics. 2023 Dec 15;25(1):270-287. doi: 10.1093/biostatistics/kxac047.

Abstract

In the analysis of single-cell RNA sequencing data, researchers often characterize the variation between cells by estimating a latent variable, such as cell type or pseudotime, representing some aspect of the cell's state. They then test each gene for association with the estimated latent variable. If the same data are used for both of these steps, then standard methods for computing p-values in the second step will fail to achieve statistical guarantees such as Type 1 error control. Furthermore, approaches such as sample splitting that can be applied to solve similar problems in other settings are not applicable in this context. In this article, we introduce count splitting, a flexible framework that allows us to carry out valid inference in this setting, for virtually any latent variable estimation technique and inference approach, under a Poisson assumption. We demonstrate the Type 1 error control and power of count splitting in a simulation study and apply count splitting to a data set of pluripotent stem cells differentiating to cardiomyocytes.

摘要

在单细胞 RNA 测序数据分析中,研究人员通常通过估计潜在变量(例如细胞类型或伪时间)来描述细胞之间的变化,该潜在变量代表细胞状态的某个方面。然后,他们测试每个基因与估计的潜在变量的关联。如果这两个步骤都使用相同的数据,那么在第二步中计算 p 值的标准方法将无法实现统计学保证,例如第一类错误控制。此外,在其他环境中可应用于解决类似问题的样本分割等方法在这种情况下并不适用。在本文中,我们介绍了计数分割,这是一种灵活的框架,允许我们在泊松假设下,对于几乎任何潜在变量估计技术和推理方法,在这种情况下进行有效的推理。我们在模拟研究中展示了计数分割的第一类错误控制和功效,并将计数分割应用于多能干细胞向心肌细胞分化的数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验