Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
J Virol. 2023 Jan 31;97(1):e0172322. doi: 10.1128/jvi.01723-22. Epub 2022 Dec 19.
Most human influenza vaccine antigens are produced in fertilized chicken eggs. Recent H3N2 egg-based vaccine antigens have limited effectiveness, partially due to egg-adaptive substitutions that alter the antigenicity of the hemagglutinin (HA) protein. The nucleoside-modified mRNA encapsulated in lipid nanoparticles (mRNA-LNP) vaccine platform is a promising alternative for egg-based influenza vaccines because mRNA-LNP-derived antigens are not subject to adaptive pressures that arise during the production of antigens in chicken eggs. Here, we compared H3N2-specific antibody responses in mice vaccinated with either 3c.2A H3-encoding mRNA-LNP or a conventional egg-based Fluzone vaccine (which included an egg-adapted 3c.2A antigen) supplemented with an MF59-like adjuvant. We tested mRNA-LNP encoding wild-type and egg-adapted H3 antigens. We found that mRNA-LNP encoding wild-type H3 elicited antibodies that neutralized the wild-type 3c.2A H3N2 virus more effectively than antibodies elicited by mRNA-LNP encoding egg-adapted H3 or the egg-based Fluzone vaccine. mRNA-LNP expressing either wild-type or egg-adapted H3 protected mice against infection with the wild-type 3c2.A H3N2, whereas the egg-based Fluzone vaccine did not. We found that both mRNA-LNP vaccines elicited high levels of group 2 HA stalk-reactive antibodies, which likely contributed to protection in vivo. Our studies indicate that nucleoside-modified mRNA-LNP-based vaccines can circumvent problems associated with egg adaptations with recent 3c2.A H3N2 viruses. This study shows that the nucleoside-modified mRNA-LNP vaccine platform is a promising alternative for egg-based influenza vaccines. We show that mRNA-LNP vaccines expressing H3 antigens elicit high levels of antibodies in mice and protect against H3N2 influenza virus infection.
大多数人用流感疫苗抗原是在受精鸡蛋中生产的。最近的基于鸡蛋的 H3N2 疫苗抗原效果有限,部分原因是鸡蛋适应性替代改变了血凝素 (HA) 蛋白的抗原性。封装在脂质纳米颗粒 (mRNA-LNP) 中的核苷修饰的 mRNA 疫苗平台是基于鸡蛋的流感疫苗的一种有前途的替代品,因为 mRNA-LNP 衍生的抗原不受在鸡卵中生产抗原时出现的适应性压力的影响。在这里,我们比较了用 3c.2A H3 编码的 mRNA-LNP 或常规基于鸡蛋的 Fluzone 疫苗(其中包括适应鸡蛋的 3c.2A 抗原)接种的小鼠中的 H3N2 特异性抗体反应,并用 MF59 样佐剂进行了补充。我们测试了编码野生型和适应鸡蛋的 H3 抗原的 mRNA-LNP。我们发现,编码野生型 H3 的 mRNA-LNP 诱导的抗体比编码适应鸡蛋的 H3 的 mRNA-LNP 或基于鸡蛋的 Fluzone 疫苗诱导的抗体更有效地中和野生型 3c.2A H3N2 病毒。表达野生型或适应鸡蛋的 H3 的 mRNA-LNP 保护小鼠免受野生型 3c2.A H3N2 的感染,而基于鸡蛋的 Fluzone 疫苗则不能。我们发现,两种 mRNA-LNP 疫苗都诱导高水平的 2 组 HA 茎反应性抗体,这可能有助于体内保护。我们的研究表明,核苷修饰的 mRNA-LNP 疫苗可以规避与最近的 3c2.A H3N2 病毒相关的鸡蛋适应性问题。这项研究表明,核苷修饰的 mRNA-LNP 疫苗平台是基于鸡蛋的流感疫苗的一种有前途的替代品。我们表明,表达 H3 抗原的 mRNA-LNP 疫苗在小鼠中诱导高水平的抗体,并能预防 H3N2 流感病毒感染。