Suppr超能文献

指导脂质组学研究应用中信息学软件和工具的选择。

Guiding the choice of informatics software and tools for lipidomics research applications.

机构信息

Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany.

Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK.

出版信息

Nat Methods. 2023 Feb;20(2):193-204. doi: 10.1038/s41592-022-01710-0. Epub 2022 Dec 21.

Abstract

Progress in mass spectrometry lipidomics has led to a rapid proliferation of studies across biology and biomedicine. These generate extremely large raw datasets requiring sophisticated solutions to support automated data processing. To address this, numerous software tools have been developed and tailored for specific tasks. However, for researchers, deciding which approach best suits their application relies on ad hoc testing, which is inefficient and time consuming. Here we first review the data processing pipeline, summarizing the scope of available tools. Next, to support researchers, LIPID MAPS provides an interactive online portal listing open-access tools with a graphical user interface. This guides users towards appropriate solutions within major areas in data processing, including (1) lipid-oriented databases, (2) mass spectrometry data repositories, (3) analysis of targeted lipidomics datasets, (4) lipid identification and (5) quantification from untargeted lipidomics datasets, (6) statistical analysis and visualization, and (7) data integration solutions. Detailed descriptions of functions and requirements are provided to guide customized data analysis workflows.

摘要

质谱脂质组学的进展使得生物学和生物医学领域的研究迅速增多。这些研究产生了极其庞大的原始数据集,需要复杂的解决方案来支持自动化数据处理。为此,已经开发了许多专门针对特定任务的软件工具。然而,对于研究人员来说,决定哪种方法最适合他们的应用需要进行特定的测试,这既低效又耗时。在这里,我们首先回顾了数据处理管道,总结了可用工具的范围。接下来,为了支持研究人员,LIPID MAPS 提供了一个交互式在线门户,列出了具有图形用户界面的开放访问工具。这引导用户在数据处理的主要领域内找到合适的解决方案,包括(1)面向脂质的数据库,(2)质谱数据存储库,(3)靶向脂质组学数据集的分析,(4)脂质鉴定和(5)非靶向脂质组学数据集的定量,(6)统计分析和可视化,以及(7)数据集成解决方案。提供了详细的功能和要求描述,以指导定制数据分析工作流程。

相似文献

1
Guiding the choice of informatics software and tools for lipidomics research applications.
Nat Methods. 2023 Feb;20(2):193-204. doi: 10.1038/s41592-022-01710-0. Epub 2022 Dec 21.
3
lipidr: A Software Tool for Data Mining and Analysis of Lipidomics Datasets.
J Proteome Res. 2020 Jul 2;19(7):2890-2897. doi: 10.1021/acs.jproteome.0c00082. Epub 2020 Mar 23.
4
Applications of the pipeline environment for visual informatics and genomics computations.
BMC Bioinformatics. 2011 Jul 26;12:304. doi: 10.1186/1471-2105-12-304.
5
Analysis of lipid experiments (ALEX): a software framework for analysis of high-resolution shotgun lipidomics data.
PLoS One. 2013 Nov 7;8(11):e79736. doi: 10.1371/journal.pone.0079736. eCollection 2013.
6
Lipidomics informatics for life-science.
J Biotechnol. 2017 Nov 10;261:131-136. doi: 10.1016/j.jbiotec.2017.08.010. Epub 2017 Aug 16.
7
LipidFinder 2.0: advanced informatics pipeline for lipidomics discovery applications.
Bioinformatics. 2021 Jun 16;37(10):1478-1479. doi: 10.1093/bioinformatics/btaa856.
9
LINT-Web: A Web-Based Lipidomic Data Mining Tool Using Intra-Omic Integrative Correlation Strategy.
Small Methods. 2021 Sep;5(9):e2100206. doi: 10.1002/smtd.202100206. Epub 2021 Jul 31.
10
LipidFinder on LIPID MAPS: peak filtering, MS searching and statistical analysis for lipidomics.
Bioinformatics. 2019 Feb 15;35(4):685-687. doi: 10.1093/bioinformatics/bty679.

引用本文的文献

3
LipidIN: a comprehensive repository for flash platform-independent annotation and reverse lipidomics.
Nat Commun. 2025 May 16;16(1):4566. doi: 10.1038/s41467-025-59683-5.
5
Recommendations for robust and reproducible research on ferroptosis.
Nat Rev Mol Cell Biol. 2025 Apr 9. doi: 10.1038/s41580-025-00843-2.
6
LipidSigR: a R-based solution for integrated lipidomics data analysis and visualization.
Bioinform Adv. 2025 Mar 10;5(1):vbaf047. doi: 10.1093/bioadv/vbaf047. eCollection 2025.
7
LipidFun: a database of lipid functions.
Bioinformatics. 2025 Mar 29;41(4). doi: 10.1093/bioinformatics/btaf110.
9
MS-DIAL 5 multimodal mass spectrometry data mining unveils lipidome complexities.
Nat Commun. 2024 Nov 28;15(1):9903. doi: 10.1038/s41467-024-54137-w.
10
Nonvesicular lipid transfer drives myelin growth in the central nervous system.
Nat Commun. 2024 Nov 11;15(1):9756. doi: 10.1038/s41467-024-53511-y.

本文引用的文献

1
The SARS-CoV2 envelope differs from host cells, exposes procoagulant lipids, and is disrupted in vivo by oral rinses.
J Lipid Res. 2022 Jun;63(6):100208. doi: 10.1016/j.jlr.2022.100208. Epub 2022 Apr 15.
2
Sex and genetic background define the metabolic, physiologic, and molecular response to protein restriction.
Cell Metab. 2022 Feb 1;34(2):209-226.e5. doi: 10.1016/j.cmet.2021.12.018.
3
The reactome pathway knowledgebase 2022.
Nucleic Acids Res. 2022 Jan 7;50(D1):D687-D692. doi: 10.1093/nar/gkab1028.
4
Rhea, the reaction knowledgebase in 2022.
Nucleic Acids Res. 2022 Jan 7;50(D1):D693-D700. doi: 10.1093/nar/gkab1016.
5
Multi-omic profiling of primary mouse neutrophils predicts a pattern of sex and age-related functional regulation.
Nat Aging. 2021 Aug;1(8):715-733. doi: 10.1038/s43587-021-00086-8. Epub 2021 Jul 19.
6
Nonalcoholic fatty liver disease stratification by liver lipidomics.
J Lipid Res. 2021;62:100104. doi: 10.1016/j.jlr.2021.100104. Epub 2021 Aug 10.
7
SpaceM reveals metabolic states of single cells.
Nat Methods. 2021 Jul;18(7):799-805. doi: 10.1038/s41592-021-01198-0. Epub 2021 Jul 5.
8
MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights.
Nucleic Acids Res. 2021 Jul 2;49(W1):W388-W396. doi: 10.1093/nar/gkab382.
9
Non-canonical autophagy drives alternative ATG8 conjugation to phosphatidylserine.
Mol Cell. 2021 May 6;81(9):2031-2040.e8. doi: 10.1016/j.molcel.2021.03.020. Epub 2021 Apr 27.
10
Asymmetric opening of the homopentameric 5-HT serotonin receptor in lipid bilayers.
Nat Commun. 2021 Feb 16;12(1):1074. doi: 10.1038/s41467-021-21016-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验