Suppr超能文献

药物基因组相互作用概率(PIP)评分在预测大型患者群体中药物-基因、药物-药物-基因和药物-基因-基因相互作用风险方面的验证

Validation of Pharmacogenomic Interaction Probability (PIP) Scores in Predicting Drug-Gene, Drug-Drug-Gene, and Drug-Gene-Gene Interaction Risks in a Large Patient Population.

作者信息

Ashcraft Kristine, Grande Kendra, Bristow Sara L, Moyer Nicolas, Schmidlen Tara, Moretz Chad, Wick Jennifer A, Blaxall Burns C

机构信息

Invitae Corporation, 1400 16th Street, San Francisco, CA 94103, USA.

The Christ Hospital Health Network, 2139 Auburn Avenue, Cincinnati, OH 45219, USA.

出版信息

J Pers Med. 2022 Nov 29;12(12):1972. doi: 10.3390/jpm12121972.

Abstract

Utilizing pharmacogenomic (PGx) testing and integrating evidence-based guidance in drug therapy enables an improved treatment response and decreases the occurrence of adverse drug events. We conducted a retrospective analysis to validate the YouScript PGx interaction probability (PIP) algorithm, which predicts patients for whom PGx testing would identify one or more evidence-based, actionable drug-gene, drug-drug-gene, or drug-gene-gene interactions (EADGIs). PIP scores generated for 36,511 patients were assessed according to the results of PGx multigene panel testing. PIP scores versus the proportion of patients in whom at least one EADGI was found were 22.4% vs. 22.4% ( = 1.000), 23.5% vs. 23.4% ( = 0.6895), 30.9% vs. 29.4% ( = 0.0667), and 27.3% vs. 26.4% ( = 0.3583) for patients tested with a minimum of 3-, 5-, 14-, and 25-gene panels, respectively. These data suggest a striking concordance between the PIP scores and the EAGDIs found by gene panel testing. The ability to identify patients most likely to benefit from PGx testing has the potential to reduce health care costs, enable patient access to personalized medicine, and ultimately improve drug efficacy and safety.

摘要

利用药物基因组学(PGx)检测并在药物治疗中整合循证指南,能够改善治疗反应并减少药物不良事件的发生。我们进行了一项回顾性分析,以验证YouScript PGx相互作用概率(PIP)算法,该算法可预测哪些患者通过PGx检测会发现一种或多种循证的、可采取行动的药物-基因、药物-药物-基因或药物-基因-基因相互作用(EADGI)。根据PGx多基因检测结果评估了为36511名患者生成的PIP评分。对于分别使用至少3基因、5基因、14基因和25基因检测板进行检测的患者,PIP评分与发现至少一种EADGI的患者比例分别为22.4%对22.4%( = 1.000)、23.5%对23.4%( = 0.6895)、30.9%对29.4%( = 0.0667)和27.3%对26.4%( = 0.3583)。这些数据表明PIP评分与基因检测板检测发现的EAGDI之间存在显著一致性。识别最有可能从PGx检测中受益的患者的能力有可能降低医疗保健成本,使患者能够获得个性化药物,并最终提高药物疗效和安全性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/950e/9783707/c5ef00ede107/jpm-12-01972-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验