Suppr超能文献

开发靶向共价药物的先进方法。

Advanced approaches of developing targeted covalent drugs.

作者信息

Gai Conghao, Harnor Suzannah J, Zhang Shihao, Cano Céline, Zhuang Chunlin, Zhao Qingjie

机构信息

Organic Chemistry Group, College of Pharmacy, Naval Medical University Shanghai 200433 P. R. China

Cancer Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University Newcastle upon Tyne NE1 7RU UK.

出版信息

RSC Med Chem. 2022 Oct 11;13(12):1460-1475. doi: 10.1039/d2md00216g. eCollection 2022 Dec 14.

Abstract

In recent years, the development of targeted covalent inhibitors has gained popularity around the world. Specific groups (electrophilic warheads) form irreversible bonds with the side chain of nucleophilic amino acid residues, thus changing the function of biological targets such as proteins. Since the first targeted covalent inhibitor was disclosed in the 1990s, great efforts have been made to develop covalent ligands from known reversible leads or drugs by addition of tolerated electrophilic warheads. However, high reactivity and "off-target" toxicity remain challenging issues. This review covers the concept of targeted covalent inhibition to diseases, discusses traditional and interdisciplinary strategies of cysteine-focused covalent drug discovery, and exhibits newly disclosed electrophilic warheads majorly targeting the cysteine residue. Successful applications to address the challenges of designing effective covalent drugs are also introduced.

摘要

近年来,靶向共价抑制剂的研发在全球范围内受到广泛关注。特定基团(亲电弹头)与亲核氨基酸残基的侧链形成不可逆键,从而改变蛋白质等生物靶点的功能。自20世纪90年代首个靶向共价抑制剂被披露以来,人们付出了巨大努力,通过添加可耐受的亲电弹头,从已知的可逆先导化合物或药物中开发共价配体。然而,高反应性和“脱靶”毒性仍然是具有挑战性的问题。本综述涵盖了靶向共价抑制对疾病的概念,讨论了以半胱氨酸为重点的共价药物发现的传统和跨学科策略,并展示了主要靶向半胱氨酸残基的新披露的亲电弹头。还介绍了为应对设计有效共价药物的挑战而取得的成功应用。

相似文献

1
Advanced approaches of developing targeted covalent drugs.
RSC Med Chem. 2022 Oct 11;13(12):1460-1475. doi: 10.1039/d2md00216g. eCollection 2022 Dec 14.
2
Electrophilic warheads in covalent drug discovery: an overview.
Expert Opin Drug Discov. 2022 Apr;17(4):413-422. doi: 10.1080/17460441.2022.2034783. Epub 2022 Feb 6.
3
The expanding repertoire of covalent warheads for drug discovery.
Drug Discov Today. 2023 Dec;28(12):103799. doi: 10.1016/j.drudis.2023.103799. Epub 2023 Oct 13.
4
Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology.
J Med Chem. 2019 Jun 27;62(12):5673-5724. doi: 10.1021/acs.jmedchem.8b01153. Epub 2019 Jan 25.
5
A road map for prioritizing warheads for cysteine targeting covalent inhibitors.
Eur J Med Chem. 2018 Dec 5;160:94-107. doi: 10.1016/j.ejmech.2018.10.010. Epub 2018 Oct 6.
6
Assessment of Tractable Cysteines for Covalent Targeting by Screening Covalent Fragments.
Chembiochem. 2021 Feb 15;22(4):743-753. doi: 10.1002/cbic.202000700. Epub 2020 Nov 9.
7
Lysine-Targeting Covalent Inhibitors.
Angew Chem Int Ed Engl. 2017 Nov 27;56(48):15200-15209. doi: 10.1002/anie.201707630. Epub 2017 Oct 27.
8
An update on the discovery and development of reversible covalent inhibitors.
Med Chem Res. 2023;32(6):1039-1062. doi: 10.1007/s00044-023-03065-3. Epub 2023 Apr 29.
9
Selective Covalent Targeting of Pyruvate Kinase M2 Using Arsenous Warheads.
J Med Chem. 2023 Feb 23;66(4):2608-2621. doi: 10.1021/acs.jmedchem.2c01563. Epub 2023 Feb 1.

引用本文的文献

1
Mechanistic Insights of a p53-Targeting Small Molecule.
ACS Pharmacol Transl Sci. 2025 May 7;8(6):1726-1740. doi: 10.1021/acsptsci.5c00110. eCollection 2025 Jun 13.
2
Species-Dependent Metabolism of a Covalent nsP2 Protease Inhibitor with In Vivo Antialphaviral Activity.
J Med Chem. 2025 May 22;68(10):10473-10485. doi: 10.1021/acs.jmedchem.5c00825. Epub 2025 May 12.
3
Synthesis and Evaluation of Pseudoglucosinolates Releasing Isothiocyanates in the Presence of Azoreductases.
Chembiochem. 2025 Jun 16;26(12):e202500152. doi: 10.1002/cbic.202500152. Epub 2025 May 29.
4
Rat Sarcoma (RAS)-Protein-Targeting Synthetic Cell-Penetrating Peptide as an Anticancer Biomaterial.
Biomater Res. 2025 Apr 15;29:0175. doi: 10.34133/bmr.0175. eCollection 2025.
8
Two-Step Covalent Docking with Attracting Cavities.
J Chem Inf Model. 2023 Dec 25;63(24):7847-7859. doi: 10.1021/acs.jcim.3c01055. Epub 2023 Dec 4.
9
Structural analysis of the coronavirus main protease for the design of pan-variant inhibitors.
Sci Rep. 2023 Apr 29;13(1):7055. doi: 10.1038/s41598-023-34305-6.

本文引用的文献

1
A Warhead Substitution Study on the Coronavirus Main Protease Inhibitor Nirmatrelvir.
ACS Med Chem Lett. 2022 Jul 19;13(8):1345-1350. doi: 10.1021/acsmedchemlett.2c00260. eCollection 2022 Aug 11.
2
Ynamide Electrophile for the Profiling of Ligandable Carboxyl Residues in Live Cells and the Development of New Covalent Inhibitors.
J Med Chem. 2022 Aug 11;65(15):10408-10418. doi: 10.1021/acs.jmedchem.2c00272. Epub 2022 Jul 26.
3
Dual Inhibition of CDK12/CDK13 Targets Both Tumor and Immune Cells in Ovarian Cancer.
Cancer Res. 2022 Oct 4;82(19):3588-3602. doi: 10.1158/0008-5472.CAN-22-0222.
4
A Comprehensive Overview of Globally Approved JAK Inhibitors.
Pharmaceutics. 2022 May 6;14(5):1001. doi: 10.3390/pharmaceutics14051001.
5
Advances and perspectives of proteolysis targeting chimeras (PROTACs) in drug discovery.
Bioorg Chem. 2022 Aug;125:105848. doi: 10.1016/j.bioorg.2022.105848. Epub 2022 May 5.
6
Discovery of SARS-CoV-2 main protease covalent inhibitors from a DNA-encoded library selection.
SLAS Discov. 2022 Mar;27(2):79-85. doi: 10.1016/j.slasd.2022.01.001. Epub 2022 Jan 19.
7
From computer-aided drug discovery to computer-driven drug discovery.
Drug Discov Today Technol. 2021 Dec;39:111-117. doi: 10.1016/j.ddtec.2021.08.001. Epub 2021 Aug 30.
8
The Development of BTK Inhibitors: A Five-Year Update.
Molecules. 2021 Dec 6;26(23):7411. doi: 10.3390/molecules26237411.
9
Discovery of Di- and Trihaloacetamides as Covalent SARS-CoV-2 Main Protease Inhibitors with High Target Specificity.
J Am Chem Soc. 2021 Dec 15;143(49):20697-20709. doi: 10.1021/jacs.1c08060. Epub 2021 Dec 3.
10
Development of a chemogenomics library for phenotypic screening.
J Cheminform. 2021 Nov 24;13(1):91. doi: 10.1186/s13321-021-00569-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验