Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China.
Big Data & Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China.
J Magn Reson Imaging. 2023 Sep;58(3):827-837. doi: 10.1002/jmri.28578. Epub 2022 Dec 29.
Characterization of the dynamics of functional brain network has gained increased attention in the study of depression. However, most studies have focused on single temporal dimension, while ignoring spatial dimensional information, hampering the discovery of validated biomarkers for depression.
To integrate temporal and spatial functional MRI variability features of dynamic brain network in machine-learning techniques to distinguish patients with major depressive disorder (MDD) from healthy controls (HCs).
Prospective.
A discovery cohort including 119 patients and 106 HCs and an external validation cohort including 126 patients and 124 HCs from Rest-meta-MDD consortium.
FIELD STRENGTH/SEQUENCE: A 3.0 T/resting-state functional MRI using the gradient echo sequence.
A random forest (RF) model integrating temporal and spatial variability features of dynamic brain networks with separate feature selection method (M ) was implemented for MDD classification. Its performance was compared with three RF models that used: temporal variability features (M ), spatial variability features (M ), and integrated temporal and spatial variability features with hybrid feature selection method (M ). A linear regression model based on M was further established to assess MDD symptom severity, with prediction performance evaluated by the correlations between true and predicted scores.
Receiver operating characteristic analyses with the area under the curve (AUC) were used to evaluate models' performance. Pearson's correlation was used to assess relationship of predicted scores and true scores. P < 0.05 was considered statistically significant.
The model with M achieved the best performance, with AUCs of 0.946 and 0.834 in the discovery and validation cohort, respectively. Additionally, altered temporal and spatial variability could significantly predict the severity of depression (r = 0.640) and anxiety (r = 0.616) in MDD.
Integration of temporal and spatial variability features provides potential assistance for clinical diagnosis and symptom prediction of MDD.
Stage 2.
功能性脑网络动力学特征的描述在抑郁症研究中受到越来越多的关注。然而,大多数研究都集中在单一的时间维度,而忽略了空间维度信息,这阻碍了抑郁症验证性生物标志物的发现。
将动态脑网络的时间和空间功能磁共振成像变异性特征整合到机器学习技术中,以区分重度抑郁症(MDD)患者和健康对照者(HCs)。
前瞻性。
来自 Rest-meta-MDD 联盟的发现队列包括 119 名患者和 106 名 HCs,以及外部验证队列包括 126 名患者和 124 名 HCs。
磁场强度/序列:使用梯度回波序列的 3.0T/静息态功能磁共振成像。
为了进行 MDD 分类,实现了一个随机森林(RF)模型,该模型整合了动态脑网络的时间和空间变异性特征,并采用了单独的特征选择方法(M )。将其性能与三个使用以下特征的 RF 模型进行了比较:时间变异性特征(M )、空间变异性特征(M )以及混合特征选择方法的集成时间和空间变异性特征(M )。进一步基于 M 建立了线性回归模型,以评估 MDD 症状严重程度,通过真实分数和预测分数之间的相关性来评估预测性能。
使用曲线下面积(AUC)的接收者操作特征分析来评估模型的性能。使用 Pearson 相关系数评估预测分数和真实分数之间的关系。P<0.05 被认为具有统计学意义。
采用 M 的模型表现最佳,在发现队列和验证队列中的 AUC 分别为 0.946 和 0.834。此外,改变的时间和空间变异性可以显著预测 MDD 的严重程度(r=0.640)和焦虑(r=0.616)。
时间和空间变异性特征的整合为 MDD 的临床诊断和症状预测提供了潜在的帮助。
2
2 级