Suppr超能文献

基于心电图的人工智能用于心力衰竭诊断:一项系统评价和荟萃分析。

Electrocardiogram-based artificial intelligence for the diagnosis of heart failure: a systematic review and meta-analysis.

作者信息

Li Xin-Mu, Gao Xin-Yi, Tse Gary, Hong Shen-Da, Chen Kang-Yin, Li Guang-Ping, Liu Tong

机构信息

Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.

Kent and Medway Medical School, Canterbury, United Kingdom.

出版信息

J Geriatr Cardiol. 2022 Dec 28;19(12):970-980. doi: 10.11909/j.issn.1671-5411.2022.12.002.

Abstract

BACKGROUND

The electrocardiogram (ECG) is an inexpensive and easily accessible investigation for the diagnosis of cardiovascular diseases including heart failure (HF). The application of artificial intelligence (AI) has contributed to clinical practice in terms of aiding diagnosis, prognosis, risk stratification and guiding clinical management. The aim of this study is to systematically review and perform a meta-analysis of published studies on the application of AI for HF detection based on the ECG.

METHODS

We searched Embase, PubMed and Web of Science databases to identify literature using AI for HF detection based on ECG data. The quality of included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) criteria. Random-effects models were used for calculating the effect estimates and hierarchical receiver operating characteristic curves were plotted. Subgroup analysis was performed. Heterogeneity and the risk of bias were also assessed.

RESULTS

A total of 11 studies including 104,737 subjects were included. The area under the curve for HF diagnosis was 0.986, with a corresponding pooled sensitivity of 0.95 (95% CI: 0.86-0.98), specificity of 0.98 (95% CI: 0.95-0.99) and diagnostic odds ratio of 831.51 (95% CI: 127.85-5407.74). In the patient selection domain of QUADAS-2, eight studies were designated as high risk.

CONCLUSIONS

According to the available evidence, the incorporation of AI can aid the diagnosis of HF. However, there is heterogeneity among machine learning algorithms and improvements are required in terms of quality and study design.

摘要

背景

心电图(ECG)是一种用于诊断包括心力衰竭(HF)在内的心血管疾病的廉价且易于获取的检查方法。人工智能(AI)的应用在辅助诊断、预后评估、风险分层和指导临床管理方面对临床实践做出了贡献。本研究的目的是系统评价并对已发表的基于心电图应用人工智能检测心力衰竭的研究进行荟萃分析。

方法

我们检索了Embase、PubMed和Web of Science数据库,以识别基于心电图数据使用人工智能检测心力衰竭的文献。使用诊断准确性研究质量评估2(QUADAS-2)标准评估纳入研究的质量。采用随机效应模型计算效应估计值,并绘制分层受试者工作特征曲线。进行亚组分析。还评估了异质性和偏倚风险。

结果

共纳入11项研究,包括104737名受试者。心力衰竭诊断的曲线下面积为0.986,相应的合并敏感性为0.95(95%CI:0.86-0.98),特异性为0.98(95%CI:0.95-0.99),诊断比值比为831.51(95%CI:127.85-5407.74)。在QUADAS-2的患者选择领域,八项研究被指定为高风险。

结论

根据现有证据,人工智能的纳入有助于心力衰竭的诊断。然而,机器学习算法之间存在异质性,在质量和研究设计方面需要改进。

相似文献

1
Electrocardiogram-based artificial intelligence for the diagnosis of heart failure: a systematic review and meta-analysis.
J Geriatr Cardiol. 2022 Dec 28;19(12):970-980. doi: 10.11909/j.issn.1671-5411.2022.12.002.
5
Identifying Heart Failure in ECG Data With Artificial Intelligence-A Meta-Analysis.
Front Digit Health. 2021 Feb 25;2:584555. doi: 10.3389/fdgth.2020.584555. eCollection 2020.
7
Diagnostic accuracy of artificial intelligence for detecting gastrointestinal luminal pathologies: A systematic review and meta-analysis.
Front Med (Lausanne). 2022 Nov 4;9:1018937. doi: 10.3389/fmed.2022.1018937. eCollection 2022.
8
The diagnostic value of electrocardiogram-based machine learning in long QT syndrome: a systematic review and meta-analysis.
Front Cardiovasc Med. 2023 Jun 7;10:1172451. doi: 10.3389/fcvm.2023.1172451. eCollection 2023.
9
Accuracy of artificial intelligence on histology prediction and detection of colorectal polyps: a systematic review and meta-analysis.
Gastrointest Endosc. 2020 Jul;92(1):11-22.e6. doi: 10.1016/j.gie.2020.02.033. Epub 2020 Feb 29.
10
Diagnostic Test Accuracy of artificial intelligence-assisted detection of acute coronary syndrome: A systematic review and meta-analysis.
Comput Biol Med. 2023 Dec;167:107636. doi: 10.1016/j.compbiomed.2023.107636. Epub 2023 Oct 25.

引用本文的文献

2
Emerging rapid detection methods for the monitoring of cardiovascular diseases: Current trends and future perspectives.
Mater Today Bio. 2025 Mar 14;32:101663. doi: 10.1016/j.mtbio.2025.101663. eCollection 2025 Jun.
3
Efficacy of AI Models in Detecting Heart Failure Using ECG Data: A Systematic Review and Meta-Analysis.
Cureus. 2025 Feb 7;17(2):e78683. doi: 10.7759/cureus.78683. eCollection 2025 Feb.
7
Benefits of Information Technology in Healthcare: Artificial Intelligence, Internet of Things, and Personal Health Records.
Healthc Inform Res. 2023 Oct;29(4):323-333. doi: 10.4258/hir.2023.29.4.323. Epub 2023 Oct 31.

本文引用的文献

1
Deep learning detects heart failure with preserved ejection fraction using a baseline electrocardiogram.
Eur Heart J Digit Health. 2021 Sep 17;2(4):699-703. doi: 10.1093/ehjdh/ztab081. eCollection 2021 Dec.
3
Critical appraisal of artificial intelligence-based prediction models for cardiovascular disease.
Eur Heart J. 2022 Aug 14;43(31):2921-2930. doi: 10.1093/eurheartj/ehac238.
4
Diagnosis and treatment of new heart failure with reduced ejection fraction by the artificial intelligence-enhanced electrocardiogram.
Cardiovasc Digit Health J. 2021 Aug 24;2(5):282-284. doi: 10.1016/j.cvdhj.2021.08.002. eCollection 2021 Oct.
6
Using Deep-Learning Algorithms to Simultaneously Identify Right and Left Ventricular Dysfunction From the Electrocardiogram.
JACC Cardiovasc Imaging. 2022 Mar;15(3):395-410. doi: 10.1016/j.jcmg.2021.08.004. Epub 2021 Oct 13.
7
Application of artificial intelligence to the electrocardiogram.
Eur Heart J. 2021 Dec 7;42(46):4717-4730. doi: 10.1093/eurheartj/ehab649.
8
Machine Learning of ECG Waveforms to Improve Selection for Testing for Asymptomatic Left Ventricular Dysfunction.
JACC Cardiovasc Imaging. 2021 Oct;14(10):1904-1915. doi: 10.1016/j.jcmg.2021.04.020. Epub 2021 Jun 16.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验