Suppr超能文献

基于因子感知知识图神经网络的人类癌症合成致死预测(SLGNN)

SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network.

机构信息

School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.

Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.

出版信息

Bioinformatics. 2023 Feb 3;39(2). doi: 10.1093/bioinformatics/btad015.

Abstract

MOTIVATION

Synthetic lethality (SL) is a form of genetic interaction that can selectively kill cancer cells without damaging normal cells. Exploiting this mechanism is gaining popularity in the field of targeted cancer therapy and anticancer drug development. Due to the limitations of identifying SL interactions from laboratory experiments, an increasing number of research groups are devising computational prediction methods to guide the discovery of potential SL pairs. Although existing methods have attempted to capture the underlying mechanisms of SL interactions, methods that have a deeper understanding of and attempt to explain SL mechanisms still need to be developed.

RESULTS

In this work, we propose a novel SL prediction method, SLGNN. This method is based on the following assumption: SL interactions are caused by different molecular events or biological processes, which we define as SL-related factors that lead to SL interactions. SLGNN, apart from identifying SL interaction pairs, also models the preferences of genes for different SL-related factors, making the results more interpretable for biologists and clinicians. SLGNN consists of three steps: first, we model the combinations of relationships in the gene-related knowledge graph as the SL-related factors. Next, we derive initial embeddings of genes through an explicit message aggregation process of the knowledge graph. Finally, we derive the final gene embeddings through an SL graph, constructed using known SL gene pairs, utilizing factor-based message aggregation. At this stage, a supervised end-to-end training model is used for SL interaction prediction. Based on experimental results, the proposed SLGNN model outperforms all current state-of-the-art SL prediction methods and provides better interpretability.

AVAILABILITY AND IMPLEMENTATION

SLGNN is freely available at https://github.com/zy972014452/SLGNN.

摘要

动机

合成致死性(SL)是一种遗传相互作用形式,可以选择性地杀死癌细胞而不损伤正常细胞。利用这种机制在靶向癌症治疗和抗癌药物开发领域越来越受到关注。由于从实验室实验中识别 SL 相互作用的局限性,越来越多的研究小组正在设计计算预测方法来指导潜在 SL 对的发现。尽管现有的方法已经尝试捕捉 SL 相互作用的潜在机制,但仍然需要开发更深入理解和尝试解释 SL 机制的方法。

结果

在这项工作中,我们提出了一种新的 SL 预测方法 SLGNN。该方法基于以下假设:SL 相互作用是由不同的分子事件或生物过程引起的,我们将这些过程定义为导致 SL 相互作用的 SL 相关因素。SLGNN 除了识别 SL 相互作用对之外,还对基因对不同 SL 相关因素的偏好进行建模,使结果更易于生物学家和临床医生解释。SLGNN 由三个步骤组成:首先,我们将基因相关知识图中的关系组合建模为 SL 相关因素。接下来,我们通过知识图的显式消息聚合过程获得基因的初始嵌入。最后,我们通过使用已知的 SL 基因对构建的 SL 图,利用基于因素的消息聚合,获得最终的基因嵌入。在这一阶段,使用有监督的端到端训练模型进行 SL 相互作用预测。基于实验结果,所提出的 SLGNN 模型优于所有现有的 SL 预测方法,并提供了更好的可解释性。

可用性和实现

SLGNN 可在 https://github.com/zy972014452/SLGNN 上免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/486c/9907046/1481619089a6/btad015f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验