Suppr超能文献

改变膳食盐摄入量以预防糖尿病肾病及其进展。

Altered dietary salt intake for preventing diabetic kidney disease and its progression.

机构信息

Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia.

Sydney School of Public Health, The University of Sydney, Sydney, Australia.

出版信息

Cochrane Database Syst Rev. 2023 Jan 16;1(1):CD006763. doi: 10.1002/14651858.CD006763.pub3.

Abstract

BACKGROUND

There is strong evidence that our current consumption of salt is a major factor in the development of increased blood pressure (BP) and that a reduction in our salt intake lowers BP, whether BP levels are normal or raised initially. Effective control of BP in people with diabetes lowers the risk of strokes, heart attacks and heart failure and slows the progression of chronic kidney disease (CKD) in people with diabetes. This is an update of a review first published in 2010.

OBJECTIVES

To evaluate the effect of altered salt intake on BP and markers of cardiovascular disease and of CKD in people with diabetes.

SEARCH METHODS

We searched the Cochrane Kidney and Transplant Register of Studies up to 31 March 2022 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register were identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov.

SELECTION CRITERIA

We included randomised controlled trials (RCTs) of altered salt intake in individuals with type 1 and type 2 diabetes. Studies were included when there was a difference between low and high sodium intakes of at least 34 mmol/day.

DATA COLLECTION AND ANALYSIS

Two authors independently assessed studies and resolved differences by discussion. We calculated mean effect sizes as mean difference (MD) and 95% confidence intervals (CI) using the random-effects model. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach.

MAIN RESULTS

Thirteen RCTs (313 participants), including 21 comparisons (studies), met our inclusion criteria. One RCT (two studies) was added to this review update. Participants included 99 individuals with type 1 diabetes and 214 individuals with type 2 diabetes. Two RCTs (four studies) included some participants with reduced overall kidney function. The remaining studies either reported that participants with reduced glomerular filtration rate (GFR) were excluded from the study or only included participants with microalbuminuria and normal GFR. Five studies used a parallel study design, and 16 used a cross-over design. Studies were at high risk of bias for most criteria. Random sequence generation and allocation concealment were adequate in only three and two studies, respectively. One study was at low risk of bias for blinding of participants and outcome assessment, but no studies were at low risk for selective reporting. Twelve studies reported non-commercial funding sources, three reported conflicts of interest, and eight reported adequate washout between interventions in cross-over studies. The median net reduction in 24-hour urine sodium excretion (24-hour UNa) in seven long-term studies (treatment duration four to 12 weeks) was 76 mmol (range 51 to 124 mmol), and in 10 short-term studies (treatment duration five to seven days) was 187 mmol (range 86 to 337 mmol). Data were only available graphically in four studies. In long-term studies, reduced sodium intake may lower systolic BP (SBP) by 6.15 mm Hg (7 studies: 95% CI -9.27 to -3.03; I² = 12%), diastolic BP (DBP) by 3.41 mm Hg (7 studies: 95% CI -5.56 to -1.27; I² = 41%) and mean arterial pressure (MAP) by 4.60 mm Hg (4 studies: 95% CI -7.26 to -1.94; I² = 28%). In short-term studies, low sodium intake may reduce SBP by 8.43 mm Hg (5 studies: 95% CI -14.37 to -2.48; I² = 88%), DBP by 2.95 mm Hg (5 studies: 95% CI -4.96 to -0.94; I² = 70%) and MAP by 2.37 mm Hg (9 studies: 95% CI -4.75 to -0.01; I² = 65%). There was considerable heterogeneity in most analyses but particularly among short-term studies. All analyses were considered to be of low certainty evidence. SBP, DBP and MAP reductions may not differ between hypertensive and normotensive participants or between individuals with type 1 or type 2 diabetes. In hypertensive participants, SBP, DBP and MAP may be reduced by 6.45, 3.15 and 4.88 mm Hg, respectively, while in normotensive participants, they may be reduced by 8.43, 2.95 and 2.15 mm Hg, respectively (all low certainty evidence). SBP, DBP and MAP may be reduced by 7.35, 3.04 and 4.30 mm Hg, respectively, in participants with type 2 diabetes and by 7.35, 3.20, and 0.08 mm Hg, respectively, in participants with type 1 diabetes (all low certainty evidence). Eight studies provided measures of urinary protein excretion before and after salt restriction; four reported a reduction in urinary albumin excretion with salt restriction. Pooled analyses showed no changes in GFR (12 studies: MD -1.87 mL/min/1.73 m², 95% CI -5.05 to 1.31; I² = 32%) or HbA1c (6 studies: MD -0.62, 95% CI -1.49 to 0.26; I² = 95%) with salt restriction (low certainty evidence). Body weight was reduced in studies lasting one to two weeks but not in studies lasting for longer periods (low certainty evidence). Adverse effects were reported in only one study; 11% and 21% developed postural hypotension on the low-salt diet and the low-salt diet combined with hydrochlorothiazide, respectively.

AUTHORS' CONCLUSIONS: This systematic review shows an important reduction in SBP and DBP in people with diabetes with normal GFR during short periods of salt restriction, similar to that obtained with single drug therapy for hypertension. These data support the international recommendations that people with diabetes with or without hypertension or evidence of kidney disease should reduce salt intake to less than 5 g/day (2 g sodium).

摘要

背景

有强有力的证据表明,我们目前的盐摄入量是导致血压升高的一个主要因素,减少盐的摄入量可以降低血压,无论血压水平最初是否正常或升高。在糖尿病患者中有效控制血压可以降低中风、心脏病发作和心力衰竭的风险,并减缓患有糖尿病的慢性肾脏病(CKD)的进展。这是对 2010 年首次发表的一篇综述的更新。

目的

评估改变盐摄入量对糖尿病患者血压和心血管疾病及 CKD 标志物的影响。

检索方法

我们通过与信息专家联系,使用与本综述相关的检索词,对截至 2022 年 3 月 31 日的 Cochrane 肾脏病和移植登记册中的研究进行了检索。登记册中的研究是通过对 CENTRAL、MEDLINE 和 EMBASE、会议记录、国际临床试验注册中心(ICTRP)搜索门户和 ClinicalTrials.gov 的搜索确定的。

选择标准

我们纳入了 1 型和 2 型糖尿病患者改变盐摄入量的随机对照试验(RCT)。当低钠和高钠摄入量之间的差异至少为 34 mmol/天时,研究被纳入。

数据收集和分析

两名作者独立评估研究,并通过讨论解决差异。我们使用随机效应模型计算平均效应大小作为均数差(MD)和 95%置信区间(CI)。使用推荐评估、制定和评估(GRADE)方法评估证据的可信度。

主要结果

13 项 RCT(313 名参与者),包括 21 项比较(研究),符合我们的纳入标准。本综述更新增加了一项 RCT(两项研究)。参与者包括 99 名 1 型糖尿病患者和 214 名 2 型糖尿病患者。两项 RCT(四项研究)包括一些整体肾功能降低的参与者。其余研究要么报告说排除了肾小球滤过率(GFR)降低的参与者,要么只包括微量白蛋白尿和正常 GFR 的参与者。五项研究采用平行设计,16 项采用交叉设计。研究在大多数标准上都存在高偏倚风险。只有三项研究的随机序列生成和分配隐藏是充分的,两项研究分别充分。一项研究对参与者和结局评估的盲法是低偏倚风险的,但没有研究对选择性报告是低偏倚风险的。12 项研究报告了非商业性资金来源,三项研究报告了利益冲突,八项研究报告了交叉研究中干预措施之间的充分洗脱。七项长期研究(治疗持续时间为 4 至 12 周)中 24 小时尿钠排泄量(24 小时 UNa)的中位净减少量为 76 mmol(范围为 51 至 124 mmol),十项短期研究(治疗持续时间为 5 至 7 天)中 24 小时尿钠排泄量(24 小时 UNa)的中位净减少量为 187 mmol(范围为 86 至 337 mmol)。四项研究仅以图形方式提供数据。在长期研究中,减少盐摄入可能会降低收缩压(SBP)6.15 mmHg(7 项研究:95%CI-9.27 至-3.03;I²=12%)、舒张压(DBP)3.41 mmHg(7 项研究:95%CI-5.56 至-1.27;I²=41%)和平均动脉压(MAP)4.60 mmHg(4 项研究:95%CI-7.26 至-1.94;I²=28%)。在短期研究中,低盐摄入可能会降低 SBP 8.43 mmHg(5 项研究:95%CI-14.37 至-2.48;I²=88%)、DBP 2.95 mmHg(5 项研究:95%CI-4.96 至-0.94;I²=70%)和 MAP 2.37 mmHg(9 项研究:95%CI-4.75 至-0.01;I²=65%)。大多数分析中存在相当大的异质性,但在短期研究中尤其如此。所有分析均被认为是低确定性证据。高血压和正常血压参与者之间,1 型或 2 型糖尿病患者之间,SBP、DBP 和 MAP 的降低可能没有差异。在高血压参与者中,SBP、DBP 和 MAP 可能分别降低 6.45、3.15 和 4.88 mmHg,而在正常血压参与者中,SBP、DBP 和 MAP 可能分别降低 8.43、2.95 和 2.15 mmHg(所有低确定性证据)。2 型糖尿病患者的 SBP、DBP 和 MAP 可能分别降低 7.35、3.04 和 4.30 mmHg,1 型糖尿病患者的 SBP、DBP 和 MAP 可能分别降低 7.35、3.20 和 0.08 mmHg(所有低确定性证据)。八项研究提供了盐限制前后尿蛋白排泄量的测量值;四项研究报告了盐限制后尿白蛋白排泄量减少。汇总分析显示,盐限制对肾小球滤过率(12 项研究:MD-1.87 mL/min/1.73 m²,95%CI-5.05 至 1.31;I²=32%)或糖化血红蛋白(HbA1c)(6 项研究:MD-0.62,95%CI-1.49 至 0.26;I²=95%)没有变化(低确定性证据)。持续一至两周的研究中体重减轻,但持续时间较长的研究中体重没有减轻(低确定性证据)。只有一项研究报告了不良反应;11%和 21%的患者分别在低盐饮食和低盐饮食联合氢氯噻嗪时出现体位性低血压。

作者结论

本系统评价显示,在正常肾小球滤过功能的糖尿病患者中,短期盐限制可显著降低 SBP 和 DBP,与单一降压药物治疗高血压的效果相似。这些数据支持国际建议,即无论是否患有高血压或肾脏疾病的证据,糖尿病患者都应将盐摄入量减少到每天 5 克以下(2 克钠)。

相似文献

1
Altered dietary salt intake for preventing diabetic kidney disease and its progression.
Cochrane Database Syst Rev. 2023 Jan 16;1(1):CD006763. doi: 10.1002/14651858.CD006763.pub3.
3
Altered dietary salt intake for people with chronic kidney disease.
Cochrane Database Syst Rev. 2015 Feb 18(2):CD010070. doi: 10.1002/14651858.CD010070.pub2.
4
Replacing salt with low-sodium salt substitutes (LSSS) for cardiovascular health in adults, children and pregnant women.
Cochrane Database Syst Rev. 2022 Aug 10;8(8):CD015207. doi: 10.1002/14651858.CD015207.
5
Protein restriction for diabetic kidney disease.
Cochrane Database Syst Rev. 2023 Jan 3;1(1):CD014906. doi: 10.1002/14651858.CD014906.pub2.
6
Altered dietary salt intake for preventing and treating diabetic kidney disease.
Cochrane Database Syst Rev. 2010 Dec 8(12):CD006763. doi: 10.1002/14651858.CD006763.pub2.
7
Synbiotics, prebiotics and probiotics for people with chronic kidney disease.
Cochrane Database Syst Rev. 2023 Oct 23;10(10):CD013631. doi: 10.1002/14651858.CD013631.pub2.
8
Insulin and glucose-lowering agents for treating people with diabetes and chronic kidney disease.
Cochrane Database Syst Rev. 2018 Sep 24;9(9):CD011798. doi: 10.1002/14651858.CD011798.pub2.
9
Fortification of salt with iron and iodine versus fortification of salt with iodine alone for improving iron and iodine status.
Cochrane Database Syst Rev. 2022 Apr 21;4(4):CD013463. doi: 10.1002/14651858.CD013463.pub2.
10
Glucagon-like peptide 1 (GLP-1) receptor agonists for people with chronic kidney disease and diabetes.
Cochrane Database Syst Rev. 2025 Feb 18;2(2):CD015849. doi: 10.1002/14651858.CD015849.pub2.

引用本文的文献

1
Diabetic kidney disease: from pathogenesis to multimodal therapy-current evidence and future directions.
Front Med (Lausanne). 2025 Aug 8;12:1631053. doi: 10.3389/fmed.2025.1631053. eCollection 2025.
2
Association between energy intake and prognosis in Chronic Kidney Disease (CKD) stages 3-5: an ambispective cohort study.
Ren Fail. 2025 Dec;47(1):2515205. doi: 10.1080/0886022X.2025.2515205. Epub 2025 Jul 1.
6
Advances in Understanding Diabetic Kidney Disease Progression and the Mechanisms of Acupuncture Intervention.
Int J Gen Med. 2024 Nov 27;17:5593-5609. doi: 10.2147/IJGM.S490049. eCollection 2024.
8
Low-Protein Diets, Malnutrition, and Bone Metabolism in Chronic Kidney Disease.
Nutrients. 2024 Sep 13;16(18):3098. doi: 10.3390/nu16183098.
10
Croatian Action on Salt and Health (CRASH): On the Road to Success-Less Salt, More Health.
Nutrients. 2024 May 17;16(10):1518. doi: 10.3390/nu16101518.

本文引用的文献

1
Effect of Salt Substitution on Cardiovascular Events and Death.
N Engl J Med. 2021 Sep 16;385(12):1067-1077. doi: 10.1056/NEJMoa2105675. Epub 2021 Aug 29.
3
Altered dietary salt intake for people with chronic kidney disease.
Cochrane Database Syst Rev. 2021 Jun 24;6(6):CD010070. doi: 10.1002/14651858.CD010070.pub3.
4
Effect of dietary sodium restriction on blood pressure in type 2 diabetes: A meta-analysis of randomized controlled trials.
Nutr Metab Cardiovasc Dis. 2021 Jun 7;31(6):1653-1661. doi: 10.1016/j.numecd.2021.02.019. Epub 2021 Feb 26.
5
Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride.
Cochrane Database Syst Rev. 2020 Dec 12;12(12):CD004022. doi: 10.1002/14651858.CD004022.pub5.
6
KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease.
Kidney Int. 2020 Oct;98(4S):S1-S115. doi: 10.1016/j.kint.2020.06.019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验