Suppr超能文献

靶向噬菌体的多种灭活策略概述

An Overview of Diverse Strategies To Inactivate -Targeting Bacteriophages.

作者信息

Raza Sada, Wdowiak Mateusz, Paczesny Jan

机构信息

Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.

出版信息

EcoSal Plus. 2023 Dec 12;11(1):eesp00192022. doi: 10.1128/ecosalplus.esp-0019-2022. Epub 2023 Jan 18.

Abstract

Bacteriophages are viruses that infect bacteria and thus threaten industrial processes relying on the production executed by bacterial cells. Industries bear huge economic losses due to such recurring and resilient infections. Depending on the specificity of the process, there is a need for appropriate methods of bacteriophage inactivation, with an emphasis on being inexpensive and high efficiency. In this review, we summarize the reports on antiphagents, i.e., antibacteriophage agents on inactivation of bacteriophages. We focused on bacteriophages targeting the representatives of the family, as its representative, , is most commonly used in the bio-industry. The review is divided into sections dealing with bacteriophage inactivation by physical factors, chemical factors, and nanotechnology-based solutions.

摘要

噬菌体是感染细菌的病毒,因此会对依赖细菌细胞进行生产的工业过程构成威胁。由于这种反复出现且具有韧性的感染,工业遭受了巨大的经济损失。根据工艺的特殊性,需要有适当的噬菌体灭活方法,重点是要廉价且高效。在这篇综述中,我们总结了关于抗噬菌体剂(即用于灭活噬菌体的抗菌噬菌体剂)的报告。我们重点关注针对该菌科代表的噬菌体,因为其代表菌株在生物工业中最常用。该综述分为几个部分,分别论述通过物理因素、化学因素以及基于纳米技术的解决方案实现的噬菌体灭活。

相似文献

1
An Overview of Diverse Strategies To Inactivate -Targeting Bacteriophages.
EcoSal Plus. 2023 Dec 12;11(1):eesp00192022. doi: 10.1128/ecosalplus.esp-0019-2022. Epub 2023 Jan 18.
2
Bacteriophages of Soft Rot Enterobacteriaceae-a minireview.
FEMS Microbiol Lett. 2016 Jan;363(2):fnv230. doi: 10.1093/femsle/fnv230. Epub 2015 Nov 30.
3
Isolation and characterization of Enterobacteriaceae species infesting post-harvest strawberries and their biological control using bacteriophages.
Appl Microbiol Biotechnol. 2016 Oct;100(19):8593-606. doi: 10.1007/s00253-016-7651-0. Epub 2016 Jun 29.
4
The Effect of Zero-Valent Iron Nanoparticles (nZVI) on Bacteriophages.
Viruses. 2022 Apr 22;14(5):867. doi: 10.3390/v14050867.
5
Mechanisms of Type I-E and I-F CRISPR-Cas Systems in .
EcoSal Plus. 2019 Feb;8(2). doi: 10.1128/ecosalplus.ESP-0008-2018.
6
Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles.
Colloids Surf B Biointerfaces. 2011 Jul 1;85(2):161-7. doi: 10.1016/j.colsurfb.2011.02.023. Epub 2011 Feb 22.
7
Bacteriophage therapy against Enterobacteriaceae.
Virol Sin. 2015 Feb;30(1):11-8. doi: 10.1007/s12250-014-3543-6. Epub 2015 Feb 3.
9
Photodynamic inactivation of mammalian viruses and bacteriophages.
Viruses. 2012 Jul;4(7):1034-74. doi: 10.3390/v4071034. Epub 2012 Jun 26.

引用本文的文献

1
Protecting bacteriophages under UV irradiation with brilliant blue FCF for targeted bacterial control.
Biofilm. 2025 May 9;9:100286. doi: 10.1016/j.bioflm.2025.100286. eCollection 2025 Jun.
2
The activity of indigo carmine against bacteriophages: an edible antiphage agent.
Appl Microbiol Biotechnol. 2025 Jan 25;109(1):24. doi: 10.1007/s00253-025-13414-4.
3
Chitosan nano-formulation enhances stability and bactericidal activity of the lytic phage HK6.
BMC Biotechnol. 2025 Jan 6;25(1):3. doi: 10.1186/s12896-024-00934-6.
5
Copper Oxide Electrochemical Deposition to Create Antiviral and Antibacterial Nanocoatings.
Langmuir. 2024 Jul 23;40(29):14838-14846. doi: 10.1021/acs.langmuir.4c00642. Epub 2024 Jul 9.
6
Bacteriophage Challenges in Industrial Processes: A Historical Unveiling and Future Outlook.
Pathogens. 2024 Feb 7;13(2):152. doi: 10.3390/pathogens13020152.

本文引用的文献

1
Inactivation of Coronaviruses and Phage Phi6 from Irradiation across UVC Wavelengths.
Environ Sci Technol Lett. 2021 Mar 17;8(5):425-430. doi: 10.1021/acs.estlett.1c00178. eCollection 2021 May 11.
2
The global virome: How much diversity and how many independent origins?
Environ Microbiol. 2023 Jan;25(1):40-44. doi: 10.1111/1462-2920.16207. Epub 2022 Sep 29.
3
Antiphage small molecules produced by bacteria - beyond protein-mediated defenses.
Trends Microbiol. 2023 Jan;31(1):92-106. doi: 10.1016/j.tim.2022.08.001. Epub 2022 Aug 26.
5
From Prevention to Therapy: A Roadmap of Nanotechnologies to Stay Ahead of Future Pandemics.
ACS Nano. 2022 Jul 26;16(7):9985-9993. doi: 10.1021/acsnano.2c04148. Epub 2022 Jul 6.
6
Rotating Magnetic Field-Assisted Reactor Enhances Mechanisms of Phage Adsorption on Bacterial Cell Surface.
Curr Issues Mol Biol. 2022 Mar 17;44(3):1316-1325. doi: 10.3390/cimb44030088.
7
The Effect of Zero-Valent Iron Nanoparticles (nZVI) on Bacteriophages.
Viruses. 2022 Apr 22;14(5):867. doi: 10.3390/v14050867.
8
Viral Inactivation and Biocompatibility Study of Electrically Activated Water Mist.
Microbiol Insights. 2022 May 13;15:11786361221096651. doi: 10.1177/11786361221096651. eCollection 2022.
9
Carbon dots for effective photodynamic inactivation of virus.
RSC Adv. 2020 Sep 14;10(56):33944-33954. doi: 10.1039/d0ra05849a. eCollection 2020 Sep 10.
10
Photoinactivation of Phage Phi6 as a SARS-CoV-2 Model in Wastewater: Evidence of Efficacy and Safety.
Microorganisms. 2022 Mar 19;10(3):659. doi: 10.3390/microorganisms10030659.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验