Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Guangxi University, Nanning 530004, China.
Faculty of Crop Production Sciences, The University of Agriculture, Peshawar 25130, Pakistan.
Plant Physiol. 2023 Apr 3;191(4):2301-2315. doi: 10.1093/plphys/kiad027.
Drought stress (DS) challenges sustainable agriculture production by limiting crop growth and development. The objective of the study was to evaluate the effect of melatonin-priming on enzymatic and non-enzymatic antioxidant defense mechanisms and its relation with leaf ultrastructure and stomatal traits in maize (Zea mays L) seedlings under DS (PEG-6000). DS drastically decreased seed germination, plant growth, and leaf chlorophyll content due to excessive reactive oxygen species (ROS) production. Melatonin-priming significantly (P < 0.05) increased seed germination, root length, shoot length, fresh seedling weight, proline content, total soluble protein content, sugar content, chlorophyll content, and stomatal aperture size by 101%, 30%, 133%, 51%, 22%, 59%, 54%, 20%, and 424%, compared to no priming (NP) under DS, respectively. Similarly, priming improved leaf ultrastructure and reduced the amount of chlorophyll loss and oxidative damage in maize seedlings. Melatonin seed priming with 500 µM melatonin (M2) greatly increased superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione, and ascorbate (AsA) activity, by 65%, 63%, 94%, 41%, and 55% compared to NP under DS and by 0.26%, 8%, 33%, 42%, and 15% under no-stress (NS), respectively. Melatonin-priming also reduced malondialdehyde content, electrolyte leakage, hydrogen peroxide (H2O2) content, and superoxide anion (O2-) content by 26%, 31%, 31%, and 33% compared to NP under DS and by 8%, 18%, 10%, and 11% under NS, respectively. In response to DS, melatonin-priming also stabilized the chloroplast structure, sustained cell expansion, protected cell walls, and greatly improved stomatal traits, including stomatal number, length, and width. Our results suggest that melatonin-priming improves drought tolerance in maize seedlings by alleviating the negative effect of ROS.
干旱胁迫(DS)通过限制作物生长和发育来挑战可持续农业生产。本研究的目的是评估褪黑素引发对玉米(Zea mays L)幼苗在 DS(PEG-6000)下的酶和非酶抗氧化防御机制的影响及其与叶片超微结构和气孔特征的关系。DS 会因过量活性氧(ROS)的产生而严重降低种子发芽、植物生长和叶片叶绿素含量。与未引发(NP)相比,褪黑素引发显著(P < 0.05)增加了种子发芽率、根长、茎长、鲜苗重、脯氨酸含量、总可溶性蛋白含量、糖含量、叶绿素含量和气孔孔径大小,分别为 101%、30%、133%、51%、22%、59%、54%、20%和 424%。同样,引发也改善了叶片超微结构,减少了玉米幼苗中叶绿素损失和氧化损伤的发生。用 500 μM 褪黑素(M2)进行褪黑素种子引发可使超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、谷胱甘肽和抗坏血酸(AsA)的活性分别增加 65%、63%、94%、41%和 55%,与 DS 下的 NP 相比,分别增加 0.26%、8%、33%、42%和 15%,在非胁迫(NS)下。褪黑素引发还降低了丙二醛含量、电解质泄漏、过氧化氢(H2O2)含量和超氧阴离子(O2-)含量,与 DS 下的 NP 相比,分别降低 26%、31%、31%和 33%,与 NS 下的 NP 相比,分别降低 8%、18%、10%和 11%。在 DS 下,褪黑素引发还通过减轻 ROS 的负面影响,稳定叶绿体结构,维持细胞扩张,保护细胞壁,并极大地改善了气孔特征,包括气孔数量、长度和宽度,从而提高了玉米幼苗的耐旱性。