Suppr超能文献

结构与动力学研究揭示了一种毒蕈碱型乙酰胆碱受体的超生理激活与变构调节机制。

Structural and dynamic insights into supra-physiological activation and allosteric modulation of a muscarinic acetylcholine receptor.

机构信息

Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.

Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, 100084, Beijing, China.

出版信息

Nat Commun. 2023 Jan 23;14(1):376. doi: 10.1038/s41467-022-35726-z.

Abstract

The M2 muscarinic receptor (M2R) is a prototypical G-protein-coupled receptor (GPCR) that serves as a model system for understanding GPCR regulation by both orthosteric and allosteric ligands. Here, we investigate the mechanisms governing M2R signaling versatility using cryo-electron microscopy (cryo-EM) and NMR spectroscopy, focusing on the physiological agonist acetylcholine and a supra-physiological agonist iperoxo, as well as a positive allosteric modulator LY2119620. These studies reveal that acetylcholine stabilizes a more heterogeneous M2R-G-protein complex than iperoxo, where two conformers with distinctive G-protein orientations were determined. We find that LY2119620 increases the affinity for both agonists, but differentially modulates agonists efficacy in G-protein and β-arrestin pathways. Structural and spectroscopic analysis suggest that LY211620 stabilizes distinct intracellular conformational ensembles from agonist-bound M2R, which may enhance β-arrestin recruitment while impairing G-protein activation. These results highlight the role of conformational dynamics in the complex signaling behavior of GPCRs, and could facilitate design of better drugs.

摘要

M2 毒蕈碱受体 (M2R) 是一种典型的 G 蛋白偶联受体 (GPCR),可作为理解构象和变构配体对 GPCR 调节的模型系统。在这里,我们使用冷冻电子显微镜 (cryo-EM) 和 NMR 光谱学研究了控制 M2R 信号多功能性的机制,重点研究了生理激动剂乙酰胆碱和超生理激动剂iperoxo,以及正变构调节剂 LY2119620。这些研究表明,乙酰胆碱稳定的 M2R-G 蛋白复合物比 iperoxo 更具异质性,其中确定了两种具有独特 G 蛋白取向的构象。我们发现 LY2119620 增加了两种激动剂的亲和力,但在 G 蛋白和β-抑制蛋白途径中不同调节激动剂的效力。结构和光谱分析表明,LY211620 稳定了与激动剂结合的 M2R 不同的细胞内构象集合,这可能增强β-抑制蛋白募集,同时损害 G 蛋白激活。这些结果强调了构象动力学在 GPCR 复杂信号转导行为中的作用,并可能有助于设计更好的药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c79b/9870890/762f1a4d5a31/41467_2022_35726_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验