Suppr超能文献

在多种实体瘤类型中检测到的891种RET融合基因的基因组图谱。

Genomic landscape of 891 RET fusions detected across diverse solid tumor types.

作者信息

Parimi Vamsi, Tolba Khaled, Danziger Natalie, Kuang Zheng, Sun Daokun, Lin Douglas I, Hiemenz Matthew C, Schrock Alexa B, Ross Jeffrey S, Oxnard Geoffrey R, Huang Richard S P

机构信息

Foundation Medicine, Inc, Cambridge, MA, USA.

Department of Pathology and Urology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, NY, USA.

出版信息

NPJ Precis Oncol. 2023 Jan 23;7(1):10. doi: 10.1038/s41698-023-00347-2.

Abstract

In this study, we report the clinicopathologic and genomic profiles of 891 patients with RET fusion driven advanced solid tumors. All patient samples were tested using a tissue-based DNA hybrid capture next generation sequencing (NGS) assay and a subset of the samples were liquid biopsies tested using a liquid-based hybrid capture NGS assay. RET fusions were found in 523 patients with NSCLC and in 368 patients with other solid tumors. The two tumor types with the highest number of RET fusion were lung adenocarcinoma and thyroid papillary carcinoma, and they had a prevalence rate 1.14% (455/39,922) and 9.09% (109/1199), respectively. A total of 61 novel fusions were discovered in this pan-tumor cohort. The concordance of RET fusion detection across tumor types among tissue and liquid-based NGS was 100% (8/8) in patients with greater than 1% composite tumor fraction (cTF). Herein, we present the clinicopathologic and genomic landscape of a large cohort of RET fusion positive tumors and we observed that liquid biopsy-based NGS is highly sensitive for RET fusions at cTF ≥1%.

摘要

在本研究中,我们报告了891例RET融合驱动的晚期实体瘤患者的临床病理和基因组特征。所有患者样本均使用基于组织的DNA杂交捕获二代测序(NGS)检测方法进行检测,部分样本为液体活检,使用基于液体的杂交捕获NGS检测方法进行检测。在523例非小细胞肺癌患者和368例其他实体瘤患者中发现了RET融合。RET融合数量最多的两种肿瘤类型是肺腺癌和甲状腺乳头状癌,其患病率分别为1.14%(455/39,922)和9.09%(109/1199)。在这个泛肿瘤队列中总共发现了61种新的融合。在复合肿瘤分数(cTF)大于1%的患者中,基于组织和液体的NGS在不同肿瘤类型间RET融合检测的一致性为100%(8/8)。在此,我们展示了一大群RET融合阳性肿瘤的临床病理和基因组概况,并且我们观察到基于液体活检的NGS在cTF≥1%时对RET融合具有高度敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/655f/9870857/2f0210905488/41698_2023_347_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验