Suppr超能文献

利用机器学习和化学空间分析研究克鲁兹蛋白酶抑制作用与克氏锥虫活性之间缺乏转化的原因。

Investigating the Lack of Translation from Cruzain Inhibition to Trypanosoma cruzi Activity with Machine Learning and Chemical Space Analyses.

作者信息

Lameiro Rafael F, Montanari Carlos A

机构信息

Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Trabalhador São-Carlense Avenue 400, São Carlos, Brazil.

出版信息

ChemMedChem. 2023 Mar 14;18(6):e202200434. doi: 10.1002/cmdc.202200434. Epub 2023 Feb 3.

Abstract

Chagas disease is a neglected tropical disease caused by the protozoa Trypanosoma cruzi. Cruzain, its main cysteine protease, is commonly targeted in drug discovery efforts to find new treatments for this disease. Even though the essentiality of this enzyme for the parasite has been established, many cruzain inhibitors fail as trypanocidal agents. This lack of translation from biochemical to biological assays can involve several factors, including suboptimal physicochemical properties. In this work, we aim to rationalize this phenomenon through chemical space analyses of calculated molecular descriptors. These include statistical tests, visualization of projections, scaffold analysis, and creation of machine learning models coupled with interpretability methods. Our results demonstrate a significant difference between the chemical spaces of cruzain and T. cruzi inhibitors, with compounds with more hydrogen bond donors and rotatable bonds being more likely to be good cruzain inhibitors, but less likely to be active on T. cruzi. In addition, cruzain inhibitors seem to occupy specific regions of the chemical space that cannot be easily correlated with T. cruzi activity, which means that using predictive modeling to determine whether cruzain inhibitors will be trypanocidal is not a straightforward task. We believe that the conclusions from this work might be of interest for future projects that aim to develop novel trypanocidal compounds.

摘要

恰加斯病是一种由原生动物克氏锥虫引起的被忽视的热带疾病。其主要半胱氨酸蛋白酶克氏锥虫蛋白酶,在药物研发寻找该疾病新疗法的过程中通常是靶点。尽管这种酶对寄生虫的重要性已得到证实,但许多克氏锥虫蛋白酶抑制剂作为杀锥虫剂却效果不佳。从生化分析到生物学分析缺乏转化可能涉及多个因素,包括不理想的物理化学性质。在这项工作中,我们旨在通过对计算得到的分子描述符进行化学空间分析来解释这一现象。这些分析包括统计测试、投影可视化、骨架分析以及结合可解释性方法创建机器学习模型。我们的结果表明,克氏锥虫蛋白酶抑制剂和克氏锥虫抑制剂的化学空间存在显著差异,具有更多氢键供体和可旋转键的化合物更有可能是良好的克氏锥虫蛋白酶抑制剂,但对克氏锥虫具有活性的可能性较小。此外,克氏锥虫蛋白酶抑制剂似乎占据了化学空间中特定的区域,这些区域不易与克氏锥虫的活性相关联,这意味着使用预测模型来确定克氏锥虫蛋白酶抑制剂是否具有杀锥虫活性并非易事。我们相信这项工作的结论可能会对未来旨在开发新型杀锥虫化合物的项目有所帮助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验