Suppr超能文献

胰岛素加工和分泌的相关基因座为 2 型糖尿病风险提供了新的见解。

Loci for insulin processing and secretion provide insight into type 2 diabetes risk.

机构信息

Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.

Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.

出版信息

Am J Hum Genet. 2023 Feb 2;110(2):284-299. doi: 10.1016/j.ajhg.2023.01.002. Epub 2023 Jan 23.

Abstract

Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 independent signals at 30 loci (p value < 5 × 10), which validated 12 previously reported loci for proinsulin and ten additional loci previously identified for another glycemic trait. Half of the alleles associated with higher proinsulin showed higher rather than lower effects on glucose levels, corresponding to different mechanisms. Proinsulin loci included genes that affect prohormone convertases, beta-cell dysfunction, vesicle trafficking, beta-cell transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin signals with islet expression quantitative trait locus (eQTL) data, suggesting candidate genes, including ARSG, WIPI1, SLC7A14, and SIX3. The NKX6-3/ANK1 proinsulin signal colocalized with a T2D signal and an adipose ANK1 eQTL signal but not the islet NKX6-3 eQTL. Signals were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the lead signal in the MADD locus. These results show how detailed genetic studies of an intermediate phenotype can elucidate mechanisms that may predispose one to disease.

摘要

胰岛素分泌对葡萄糖稳态至关重要,与胰岛素相比,前体胰岛素原水平升高表明在胰岛素抵抗的情况下胰岛β细胞受到压力,胰岛素分泌能力不足。我们对来自 45861 人的 16 项欧洲血统研究的空腹胰岛素原进行了全基因组关联分析。我们在 30 个基因座中发现了 36 个独立信号(p 值<5×10),验证了 12 个先前报道的胰岛素原基因座和 10 个先前鉴定的另一个血糖特征的基因座。与较高胰岛素原相关的等位基因有一半显示出对血糖水平的影响较高而不是较低,这对应于不同的机制。胰岛素原基因座包括影响前激素转化酶、β细胞功能障碍、囊泡运输、β细胞转录调节和溶酶体/自噬过程的基因。我们将 11 个胰岛素原信号与胰岛表达数量性状基因座(eQTL)数据进行了共定位,提示候选基因,包括 ARSG、WIPI1、SLC7A14 和 SIX3。NKX6-3/ANK1 胰岛素原信号与 T2D 信号和脂肪组织 ANK1 eQTL 信号共定位,但与胰岛 NKX6-3 eQTL 不共定位。信号富集了胰岛增强子,我们展示了在 MADD 基因座中主要信号的合理胰岛调节机制。这些结果表明,对中间表型的详细遗传研究如何阐明可能使人易患疾病的机制。

相似文献

1
Loci for insulin processing and secretion provide insight into type 2 diabetes risk.
Am J Hum Genet. 2023 Feb 2;110(2):284-299. doi: 10.1016/j.ajhg.2023.01.002. Epub 2023 Jan 23.
2
TCF7L2 is a master regulator of insulin production and processing.
Hum Mol Genet. 2014 Dec 15;23(24):6419-31. doi: 10.1093/hmg/ddu359. Epub 2014 Jul 11.
4
Decreased STARD10 Expression Is Associated with Defective Insulin Secretion in Humans and Mice.
Am J Hum Genet. 2017 Feb 2;100(2):238-256. doi: 10.1016/j.ajhg.2017.01.011. Epub 2017 Jan 26.
5
A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell.
Am J Hum Genet. 2014 Feb 6;94(2):186-97. doi: 10.1016/j.ajhg.2013.12.011. Epub 2014 Jan 16.
8
Identification and functional analysis of glycemic trait loci in the China Health and Nutrition Survey.
PLoS Genet. 2018 Apr 5;14(4):e1007275. doi: 10.1371/journal.pgen.1007275. eCollection 2018 Apr.
10
Identification of type 2 diabetes loci in 433,540 East Asian individuals.
Nature. 2020 Jun;582(7811):240-245. doi: 10.1038/s41586-020-2263-3. Epub 2020 May 6.

引用本文的文献

1
Weight loss mediates improvement in proinsulin processing during GLP-1 receptor agonist treatment.
Diabetol Metab Syndr. 2025 Jul 18;17(1):286. doi: 10.1186/s13098-025-01765-x.
2
Diabetes mellitus polygenic risk scores: heterogeneity and clinical translation.
Nat Rev Endocrinol. 2025 Jun 4. doi: 10.1038/s41574-025-01132-w.
3
A computational framework for identifying cytoskeletal genes associated with age-related diseases.
Sci Rep. 2025 Apr 26;15(1):14590. doi: 10.1038/s41598-025-97363-y.
4
TBC1D30 regulates proinsulin and insulin secretion and is the target of a genomic association signal for proinsulin.
Diabetologia. 2025 Jun;68(6):1169-1183. doi: 10.1007/s00125-025-06391-w. Epub 2025 Mar 10.
6
A scoping review of statistical methods to investigate colocalization between genetic associations and microRNA expression in osteoarthritis.
Osteoarthr Cartil Open. 2024 Nov 8;6(4):100540. doi: 10.1016/j.ocarto.2024.100540. eCollection 2024 Dec.
7
Inceptor binds to and directs insulin towards lysosomal degradation in β cells.
Nat Metab. 2024 Dec;6(12):2374-2390. doi: 10.1038/s42255-024-01164-y. Epub 2024 Nov 25.
8
Genetic architecture of oral glucose-stimulated insulin release provides biological insights into type 2 diabetes aetiology.
Nat Metab. 2024 Oct;6(10):1897-1912. doi: 10.1038/s42255-024-01140-6. Epub 2024 Oct 17.
9
Research trends in the relationship between vitamin D and type 2 diabetes mellitus: a 20-year bibliometric and visualization analysis.
Front Endocrinol (Lausanne). 2024 Aug 13;15:1421953. doi: 10.3389/fendo.2024.1421953. eCollection 2024.
10
Multi-omics characterization of type 2 diabetes associated genetic variation.
medRxiv. 2024 Jul 15:2024.07.15.24310282. doi: 10.1101/2024.07.15.24310282.

本文引用的文献

1
Meta-analysis fine-mapping is often miscalibrated at single-variant resolution.
Cell Genom. 2022 Dec 14;2(12). doi: 10.1016/j.xgen.2022.100210. Epub 2022 Nov 4.
2
Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation.
Nat Genet. 2022 May;54(5):560-572. doi: 10.1038/s41588-022-01058-3. Epub 2022 May 12.
3
Genome-wide association studies of metabolites in Finnish men identify disease-relevant loci.
Nat Commun. 2022 Mar 28;13(1):1644. doi: 10.1038/s41467-022-29143-5.
4
Four groups of type 2 diabetes contribute to the etiological and clinical heterogeneity in newly diagnosed individuals: An IMI DIRECT study.
Cell Rep Med. 2022 Jan 4;3(1):100477. doi: 10.1016/j.xcrm.2021.100477. eCollection 2022 Jan 18.
7
Genome-wide association analyses highlight etiological differences underlying newly defined subtypes of diabetes.
Nat Genet. 2021 Nov;53(11):1534-1542. doi: 10.1038/s41588-021-00948-2. Epub 2021 Nov 4.
8
An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci.
Nat Genet. 2021 Nov;53(11):1527-1533. doi: 10.1038/s41588-021-00945-5. Epub 2021 Oct 28.
9
The trans-ancestral genomic architecture of glycemic traits.
Nat Genet. 2021 Jun;53(6):840-860. doi: 10.1038/s41588-021-00852-9. Epub 2021 May 31.
10
A Transcription Start Site Map in Human Pancreatic Islets Reveals Functional Regulatory Signatures.
Diabetes. 2021 Jul;70(7):1581-1591. doi: 10.2337/db20-1087. Epub 2021 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验