Suppr超能文献

利用不同波束形成声速提高超声纹理特征在检测和量化肝脂肪变性中的诊断准确性。

Improving diagnostic accuracy of ultrasound texture features in detecting and quantifying hepatic steatosis using various beamforming sound speeds.

机构信息

Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, United States of America.

Department of Medicine, Division of Gastroenterology & Hepatology, Thomas Jefferson University, Philadelphia, PA 19107, United States of America.

出版信息

Phys Med Biol. 2023 Feb 17;68(4). doi: 10.1088/1361-6560/acb635.

Abstract

While ultrasound image texture has been utilized to detect and quantify hepatic steatosis, the texture features extracted using a single (conventionally 1540 m s) beamforming speed of sound (SoS) failed to achieve reliable diagnostic performance. This study aimed to investigate if the texture features extracted using various beamforming SoSs can improve the accuracy of hepatic steatosis detection and quantification.Patients with suspected non-alcoholic fatty liver disease underwent liver biopsy or MRI proton density fat fraction (PDFF) as part of standard of care, were prospectively enrolled. The radio-frequency data from subjects' right and left liver lobes were collected using 6 beamforming SoSs: 1300, 1350, 1400, 1450, 1500 and 1540 m sand analyzed offline. The texture features, i.e. Contrast, Correlation, Energy and Homogeneity from gray-level co-occurrence matrix of normalized envelope were obtained from a region of interest in the liver parenchyma.Forty-three subjects (67.2%) were diagnosed with steatosis while 21 had no steatosis. Homogeneity showed the area under the curve (AUC) of 0.75-0.82 and 0.58-0.81 for left and right lobes, respectively with varying beamforming SoSs. The combined Homogeneity value over 1300-1540 m sfrom left and right lobes showed the AUC of 0.90 and 0.81, respectively. Furthermore, the combined Homogeneity values from left and right lobes over 1300-1540 m simproved the AUC to 0.94. The correlation between texture features and steatosis severity was improved by using the images from various beamforming SoSs. The combined Contrast values over 1300-1540 m sfrom left and right lobes demonstrated the highest correlation (= 0.90) with the MRI PDFF while the combined Homogeneity values over 1300-1540 m sfrom left and right lobes showed the highest correlation with the biopsy grades (= -0.81).The diagnostic accuracy of ultrasound texture features in detecting and quantifying hepatic steatosis was improved by combining its values extracted using various beamforming SoSs.

摘要

虽然超声图像纹理已被用于检测和量化肝脂肪变性,但使用单一(传统为 1540 m/s)声速(SoS)提取的纹理特征未能达到可靠的诊断性能。本研究旨在探讨使用不同声速提取的纹理特征是否可以提高肝脂肪变性检测和定量的准确性。

疑似非酒精性脂肪性肝病患者接受了肝活检或 MRI 质子密度脂肪分数(PDFF)作为标准护理的一部分,前瞻性入组。使用 6 种声速(1300、1350、1400、1450、1500 和 1540 m/s)从受试者的左右肝叶采集射频数据,并离线进行分析。从肝实质感兴趣区域获得灰度共生矩阵的归一化包络的纹理特征,即对比度、相关性、能量和同质性。

43 名患者(67.2%)被诊断为脂肪变性,而 21 名患者没有脂肪变性。同质性显示左右叶的曲线下面积(AUC)分别为 0.75-0.82 和 0.58-0.81,具有不同的声速。左右叶 1300-1540 m/s 之间的同质性总和显示 AUC 分别为 0.90 和 0.81。此外,左右叶 1300-1540 m/s 之间的同质性总和将 AUC 提高到 0.94。使用不同声速的图像可以改善纹理特征与脂肪变性严重程度之间的相关性。左右叶 1300-1540 m/s 之间的对比度总和显示与 MRI PDFF 相关性最高(=0.90),而左右叶 1300-1540 m/s 之间的同质性总和与活检分级相关性最高(=-0.81)。

通过组合使用各种声速提取的纹理特征值,超声纹理特征在检测和量化肝脂肪变性方面的诊断准确性得到提高。

相似文献

3
Diagnostic performance of ultrasound hepatorenal index for the diagnosis of hepatic steatosis in children.
Pediatr Radiol. 2022 Jun;52(7):1306-1313. doi: 10.1007/s00247-022-05313-x. Epub 2022 Mar 1.
4
Ultrasound Shear Wave Attenuation Imaging for Grading Liver Steatosis in Volunteers and Patients With Non-alcoholic Fatty Liver Disease: A Pilot Study.
Ultrasound Med Biol. 2023 Oct;49(10):2264-2272. doi: 10.1016/j.ultrasmedbio.2023.06.020. Epub 2023 Jul 21.
9
Noninvasive Diagnosis of Nonalcoholic Fatty Liver Disease and Quantification of Liver Fat Using a New Quantitative Ultrasound Technique.
Clin Gastroenterol Hepatol. 2015 Jul;13(7):1337-1345.e6. doi: 10.1016/j.cgh.2014.11.027. Epub 2014 Dec 3.

本文引用的文献

1
Correlations between B-mode ultrasound image texture features and tissue temperatures in hyperthermia.
PLoS One. 2022 Oct 6;17(10):e0266446. doi: 10.1371/journal.pone.0266446. eCollection 2022.
2
US Attenuation for Liver Fat Quantification: An AIUM-RSNA QIBA Pulse-Echo Quantitative Ultrasound Initiative.
Radiology. 2022 Mar;302(3):495-506. doi: 10.1148/radiol.210736. Epub 2022 Jan 25.
3
4
Audio-guided self-hypnosis for reduction of claustrophobia during MR imaging: results of an observational 2-group study.
Eur Radiol. 2021 Jul;31(7):4483-4491. doi: 10.1007/s00330-021-07887-w. Epub 2021 Apr 15.
5
Liver Fat Assessment in Multiview Sonography Using Transfer Learning With Convolutional Neural Networks.
J Ultrasound Med. 2022 Jan;41(1):175-184. doi: 10.1002/jum.15693. Epub 2021 Mar 10.
7
Epidemiology of non-alcoholic and alcoholic fatty liver diseases.
Transl Gastroenterol Hepatol. 2020 Apr 5;5:16. doi: 10.21037/tgh.2019.09.08. eCollection 2020.
8
Quantitative ultrasound approaches for diagnosis and monitoring hepatic steatosis in nonalcoholic fatty liver disease.
Theranostics. 2020 Mar 4;10(9):4277-4289. doi: 10.7150/thno.40249. eCollection 2020.
9
Ultrasound-based techniques for the diagnosis of liver steatosis.
World J Gastroenterol. 2019 Oct 28;25(40):6053-6062. doi: 10.3748/wjg.v25.i40.6053.
10
Ultrasound imaging in nonalcoholic liver disease: current applications and future developments.
Quant Imaging Med Surg. 2019 Apr;9(4):546-551. doi: 10.21037/qims.2019.03.14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验