Suppr超能文献

听觉皮层处理的定量模型。

Quantitative models of auditory cortical processing.

机构信息

Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA.

Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Hear Res. 2023 Mar 1;429:108697. doi: 10.1016/j.heares.2023.108697. Epub 2023 Jan 14.

Abstract

To generate insight from experimental data, it is critical to understand the inter-relationships between individual data points and place them in context within a structured framework. Quantitative modeling can provide the scaffolding for such an endeavor. Our main objective in this review is to provide a primer on the range of quantitative tools available to experimental auditory neuroscientists. Quantitative modeling is advantageous because it can provide a compact summary of observed data, make underlying assumptions explicit, and generate predictions for future experiments. Quantitative models may be developed to characterize or fit observed data, to test theories of how a task may be solved by neural circuits, to determine how observed biophysical details might contribute to measured activity patterns, or to predict how an experimental manipulation would affect neural activity. In complexity, quantitative models can range from those that are highly biophysically realistic and that include detailed simulations at the level of individual synapses, to those that use abstract and simplified neuron models to simulate entire networks. Here, we survey the landscape of recently developed models of auditory cortical processing, highlighting a small selection of models to demonstrate how they help generate insight into the mechanisms of auditory processing. We discuss examples ranging from models that use details of synaptic properties to explain the temporal pattern of cortical responses to those that use modern deep neural networks to gain insight into human fMRI data. We conclude by discussing a biologically realistic and interpretable model that our laboratory has developed to explore aspects of vocalization categorization in the auditory pathway.

摘要

为了从实验数据中获得深入的见解,理解各个数据点之间的相互关系,并将其置于结构化框架内的背景下是至关重要的。定量建模可以为此提供基础。我们在这篇综述中的主要目标是为实验听觉神经科学家提供一系列可用的定量工具的概述。定量建模具有优势,因为它可以对观察到的数据进行紧凑的总结,明确潜在的假设,并对未来的实验进行预测。定量模型可以用于描述或拟合观察到的数据,用于测试关于神经回路如何解决任务的理论,用于确定观察到的生物物理细节如何有助于测量的活动模式,或者用于预测实验操作将如何影响神经活动。在复杂性方面,定量模型可以从高度生理现实的模型,包括单个突触级别的详细模拟,到使用抽象和简化的神经元模型来模拟整个网络的模型。在这里,我们调查了最近开发的听觉皮层处理模型的概况,重点介绍了一小部分模型,以展示它们如何帮助我们深入了解听觉处理的机制。我们讨论了从使用突触特性细节来解释皮质反应的时间模式的模型,到使用现代深度神经网络来深入了解人类 fMRI 数据的模型的例子。最后,我们讨论了我们实验室开发的一个具有生物学意义且可解释的模型,用于探索听觉通路中发声分类的各个方面。

相似文献

1
Quantitative models of auditory cortical processing.
Hear Res. 2023 Mar 1;429:108697. doi: 10.1016/j.heares.2023.108697. Epub 2023 Jan 14.
2
Experimental-neuromodeling framework for understanding auditory object processing: integrating data across multiple scales.
J Physiol Paris. 2006 Jul-Sep;100(1-3):133-41. doi: 10.1016/j.jphysparis.2006.09.006. Epub 2006 Oct 31.
3
Simple transformations capture auditory input to cortex.
Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):28442-28451. doi: 10.1073/pnas.1922033117. Epub 2020 Oct 23.
4
The Cumulative Effects of Predictability on Synaptic Gain in the Auditory Processing Stream.
J Neurosci. 2017 Jul 12;37(28):6751-6760. doi: 10.1523/JNEUROSCI.0291-17.2017. Epub 2017 Jun 12.
5
Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.
Neuroimage. 2015 Dec;123:22-32. doi: 10.1016/j.neuroimage.2015.08.040. Epub 2015 Aug 22.
6
Not All Predictions Are Equal: "What" and "When" Predictions Modulate Activity in Auditory Cortex through Different Mechanisms.
J Neurosci. 2018 Oct 3;38(40):8680-8693. doi: 10.1523/JNEUROSCI.0369-18.2018. Epub 2018 Aug 24.
7
Neural correlates of auditory scene analysis and perception.
Int J Psychophysiol. 2015 Feb;95(2):238-245. doi: 10.1016/j.ijpsycho.2014.03.004. Epub 2014 Mar 25.
8
A neurocomputational analysis of the sound-induced flash illusion.
Neuroimage. 2014 May 15;92:248-66. doi: 10.1016/j.neuroimage.2014.02.001. Epub 2014 Feb 9.
9
Speech Categorization Reveals the Role of Early-Stage Temporal-Coherence Processing in Auditory Scene Analysis.
J Neurosci. 2022 Jan 12;42(2):240-254. doi: 10.1523/JNEUROSCI.1610-21.2021. Epub 2021 Nov 11.

引用本文的文献

1
A general model unifying the adaptive, transient and sustained properties of ON and OFF auditory neural responses.
PLoS Comput Biol. 2024 Aug 2;20(8):e1012288. doi: 10.1371/journal.pcbi.1012288. eCollection 2024 Aug.

本文引用的文献

4
Distinct neuronal types contribute to hybrid temporal encoding strategies in primate auditory cortex.
PLoS Biol. 2022 May 25;20(5):e3001642. doi: 10.1371/journal.pbio.3001642. eCollection 2022 May.
6
Computational neuroscience: a frontier of the 21 century.
Natl Sci Rev. 2020 Jun 12;7(9):1418-1422. doi: 10.1093/nsr/nwaa129. eCollection 2020 Sep.
7
Functionally homologous representation of vocalizations in the auditory cortex of humans and macaques.
Curr Biol. 2021 Nov 8;31(21):4839-4844.e4. doi: 10.1016/j.cub.2021.08.043. Epub 2021 Sep 9.
8
9
Neuronal selectivity to complex vocalization features emerges in the superficial layers of primary auditory cortex.
PLoS Biol. 2021 Jun 16;19(6):e3001299. doi: 10.1371/journal.pbio.3001299. eCollection 2021 Jun.
10
Network dynamics underlying OFF responses in the auditory cortex.
Elife. 2021 Mar 24;10:e53151. doi: 10.7554/eLife.53151.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验