Suppr超能文献

构象变化和关键谷氨酸残基在 ClC-ec1 转运体中的作用。

The role of conformational change and key glutamic acid residues in the ClC-ec1 antiporter.

机构信息

Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois.

Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois.

出版信息

Biophys J. 2023 Mar 21;122(6):1068-1085. doi: 10.1016/j.bpj.2023.01.025. Epub 2023 Jan 25.

Abstract

The triple glutamine (Q) mutant (QQQ) structure of a Cl/H antiporter from Escherichia coli (ClC-ec1) displaying a novel backbone arrangement has been used to challenge the long-held notion that Cl/H antiporters do not operate through large conformational motions. The QQQ mutant substitutes the glutamine residue for an external glutamate E148, an internal glutamate E203, and a third glutamate E113 that hydrogen-bonds with E203. However, it is unknown if QQQ represents a physiologically relevant state, as well as how the protonation of the wild-type glutamates relates to the global dynamics. We herein apply continuous constant-pH molecular dynamics to investigate the H-coupled dynamics of ClC-ec1. Although any large-scale conformational rearrangement upon acidification would be due to the accumulation of excess charge within the protein, protonation of the glutamates significantly impacts mainly the local structure and dynamics. Despite the fact that the extracellular pore enlarges at acidic pHs, an occluded ClC-ec1 within the active pH range of 3.5-7.5 requires a protonated E148 to facilitate extracellular Cl release. E203 is also involved in the intracellular H transfer as an H acceptor. The water wire connection of E148 with the intracellular solution is regulated by the charge states of the E113/E203 dyad with coupled proton titration. However, the dynamics extracted from our simulations are not QQQ-like, indicating that the QQQ mutant does not represent the behavior of the wild-type ClC-ec1. These findings reinforce the necessity of having a protonatable residue at the E203 position in ClC-ec1 and suggest that a higher level of complexity exists for the intracellular H transfer in Cl/H antiporters.

摘要

已使用三重谷氨酰胺(Q)突变(QQQ)结构的大肠杆菌 Cl/H 反向转运蛋白(ClC-ec1)来挑战长期以来的观点,即 Cl/H 反向转运蛋白不通过大的构象运动起作用。QQQ 突变将谷氨酰胺残基替换为外部谷氨酸 E148、内部谷氨酸 E203 和与 E203 形成氢键的第三个谷氨酸 E113。然而,尚不清楚 QQQ 是否代表生理相关状态,以及野生型谷氨酸的质子化与整体动力学有何关系。我们在此应用连续恒 pH 分子动力学来研究 ClC-ec1 的 H 偶联动力学。尽管酸化时任何大规模构象重排都归因于蛋白质内的过量电荷积累,但谷氨酸的质子化主要显著影响局部结构和动力学。尽管在酸性 pH 下细胞外孔会扩大,但在 3.5-7.5 的活性 pH 范围内被封闭的 ClC-ec1 需要质子化的 E148 来促进细胞外 Cl 释放。E203 还作为 H 受体参与细胞内 H 转移。E148 与细胞内溶液的水线连接受 E113/E203 二联体的电荷状态调节,该二联体与偶联质子滴定一起进行质子转移。然而,从我们的模拟中提取的动力学与 QQQ 不相似,表明 QQQ 突变体不代表野生型 ClC-ec1 的行为。这些发现加强了 ClC-ec1 中 E203 位置存在可质子化残基的必要性,并表明 Cl/H 反向转运蛋白中细胞内 H 转移存在更高的复杂性。

相似文献

1
The role of conformational change and key glutamic acid residues in the ClC-ec1 antiporter.
Biophys J. 2023 Mar 21;122(6):1068-1085. doi: 10.1016/j.bpj.2023.01.025. Epub 2023 Jan 25.
2
Intracellular proton-transfer mutants in a CLC Cl-/H+ exchanger.
J Gen Physiol. 2009 Feb;133(2):131-8. doi: 10.1085/jgp.200810112. Epub 2009 Jan 12.
3
The Origin of Coupled Chloride and Proton Transport in a Cl/H Antiporter.
J Am Chem Soc. 2016 Nov 16;138(45):14923-14930. doi: 10.1021/jacs.6b06683. Epub 2016 Nov 8.
4
Water access points and hydration pathways in CLC H+/Cl- transporters.
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1819-24. doi: 10.1073/pnas.1317890111. Epub 2013 Dec 30.
5
The coupled proton transport in the ClC-ec1 Cl(-)/H(+) antiporter.
Biophys J. 2011 Nov 16;101(10):L47-9. doi: 10.1016/j.bpj.2011.10.021. Epub 2011 Nov 15.
6
Mutation of external glutamate residue reveals a new intermediate transport state and anion binding site in a CLC Cl/H antiporter.
Proc Natl Acad Sci U S A. 2019 Aug 27;116(35):17345-17354. doi: 10.1073/pnas.1901822116. Epub 2019 Aug 13.
7
Intracellular proton access in a Cl(-)/H(+) antiporter.
PLoS Biol. 2012;10(12):e1001441. doi: 10.1371/journal.pbio.1001441. Epub 2012 Dec 11.
8
Multiscale Simulations Reveal Key Aspects of the Proton Transport Mechanism in the ClC-ec1 Antiporter.
Biophys J. 2016 Mar 29;110(6):1334-45. doi: 10.1016/j.bpj.2016.02.014.
10
Multiscale Kinetic Modeling Reveals an Ensemble of Cl/H Exchange Pathways in ClC-ec1 Antiporter.
J Am Chem Soc. 2018 Feb 7;140(5):1793-1804. doi: 10.1021/jacs.7b11463. Epub 2018 Jan 30.

引用本文的文献

2
Activation of the influenza B M2 proton channel (BM2).
bioRxiv. 2024 Jul 26:2024.07.26.605324. doi: 10.1101/2024.07.26.605324.
3
Molecular basis of ClC-6 function and its impairment in human disease.
Sci Adv. 2023 Oct 13;9(41):eadg4479. doi: 10.1126/sciadv.adg4479.

本文引用的文献

1
General principles of secondary active transporter function.
Biophys Rev (Melville). 2022 Mar;3(1):011307. doi: 10.1063/5.0047967. Epub 2022 Mar 29.
2
A quantitative paradigm for water-assisted proton transport through proteins and other confined spaces.
Proc Natl Acad Sci U S A. 2021 Dec 7;118(49). doi: 10.1073/pnas.2113141118.
4
Accurate and Transferable Reactive Molecular Dynamics Models from Constrained Density Functional Theory.
J Phys Chem B. 2021 Sep 23;125(37):10471-10480. doi: 10.1021/acs.jpcb.1c05992. Epub 2021 Sep 14.
6
Localization atomic force microscopy.
Nature. 2021 Jun;594(7863):385-390. doi: 10.1038/s41586-021-03551-x. Epub 2021 Jun 16.
8
Q-cubed mutant cues clues to CLC antiport mechanism.
J Gen Physiol. 2021 Apr 5;153(4). doi: 10.1085/jgp.202112868.
9
Membrane Exporters of Fluoride Ion.
Annu Rev Biochem. 2021 Jun 20;90:559-579. doi: 10.1146/annurev-biochem-071520-112507. Epub 2021 Jan 25.
10
Alternative proton-binding site and long-distance coupling in sodium-proton antiporter NhaA.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25517-25522. doi: 10.1073/pnas.2005467117. Epub 2020 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验