Suppr超能文献

及时进行元数据策管对全球遗传多样性监测的重要性。

Importance of timely metadata curation to the global surveillance of genetic diversity.

机构信息

Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA.

Ecology, Evolution, and Behavior Program, Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA.

出版信息

Conserv Biol. 2023 Aug;37(4):e14061. doi: 10.1111/cobi.14061. Epub 2023 Mar 10.

Abstract

Genetic diversity within species represents a fundamental yet underappreciated level of biodiversity. Because genetic diversity can indicate species resilience to changing climate, its measurement is relevant to many national and global conservation policy targets. Many studies produce large amounts of genome-scale genetic diversity data for wild populations, but most (87%) do not include the associated spatial and temporal metadata necessary for them to be reused in monitoring programs or for acknowledging the sovereignty of nations or Indigenous peoples. We undertook a distributed datathon to quantify the availability of these missing metadata and to test the hypothesis that their availability decays with time. We also worked to remediate missing metadata by extracting them from associated published papers, online repositories, and direct communication with authors. Starting with 848 candidate genomic data sets (reduced representation and whole genome) from the International Nucleotide Sequence Database Collaboration, we determined that 561 contained mostly samples from wild populations. We successfully restored spatiotemporal metadata for 78% of these 561 data sets (n = 440 data sets with data on 45,105 individuals from 762 species in 17 phyla). Examining papers and online repositories was much more fruitful than contacting 351 authors, who replied to our email requests 45% of the time. Overall, 23% of our email queries to authors unearthed useful metadata. The probability of retrieving spatiotemporal metadata declined significantly as age of the data set increased. There was a 13.5% yearly decrease in metadata associated with published papers or online repositories and up to a 22% yearly decrease in metadata that were only available from authors. This rapid decay in metadata availability, mirrored in studies of other types of biological data, should motivate swift updates to data-sharing policies and researcher practices to ensure that the valuable context provided by metadata is not lost to conservation science forever.

摘要

物种内的遗传多样性代表了一个基本但未被充分认识的生物多样性层次。由于遗传多样性可以指示物种对气候变化的适应能力,因此其测量对于许多国家和全球保护政策目标都具有相关性。许多研究产生了大量野生种群的基因组规模遗传多样性数据,但其中大多数(87%)都没有包含可重复用于监测计划或承认国家或土著人民主权所需的相关空间和时间元数据。我们开展了分布式数据竞赛,以量化这些缺失元数据的可用性,并测试了这些元数据可用性随时间衰减的假设。我们还通过从相关发表的论文、在线存储库以及与作者的直接交流中提取这些缺失的元数据来进行补救。从国际核苷酸序列数据库合作组织的 848 个候选基因组数据集(简化表示和全基因组)开始,我们确定其中 561 个数据集主要包含来自野生种群的样本。我们成功地恢复了其中 78%的 561 个数据集的时空元数据(n=440 个数据集,涉及 762 个物种的 45105 个个体)。与 351 位作者联系相比,查阅论文和在线存储库的效果要好得多,作者回复我们电子邮件请求的比例为 45%。总的来说,向作者发送电子邮件查询中有 23%可以挖掘出有用的元数据。随着数据集年龄的增加,检索时空元数据的可能性显著下降。与已发表论文或在线存储库相关的元数据每年减少 13.5%,而只能从作者那里获得的元数据每年减少 22%。这种元数据可用性的快速衰减,在其他类型的生物数据研究中也有所体现,应该促使数据共享政策和研究人员实践迅速更新,以确保元数据提供的有价值背景信息不会永远丢失在保护科学中。

相似文献

1
Importance of timely metadata curation to the global surveillance of genetic diversity.
Conserv Biol. 2023 Aug;37(4):e14061. doi: 10.1111/cobi.14061. Epub 2023 Mar 10.
2
A strategy for the next decade to address data deficiency in neglected biodiversity.
Conserv Biol. 2021 Apr;35(2):502-509. doi: 10.1111/cobi.13589. Epub 2020 Sep 2.
3
Four challenges to an effective national nature assessment.
Conserv Biol. 2023 Oct;37(5):e14075. doi: 10.1111/cobi.14075. Epub 2023 May 28.
4
Evaluating global interest in biodiversity and conservation.
Conserv Biol. 2023 Oct;37(5):e14100. doi: 10.1111/cobi.14100. Epub 2023 Jun 9.
5
Retaining natural vegetation to safeguard biodiversity and humanity.
Conserv Biol. 2023 Jun;37(3):e14040. doi: 10.1111/cobi.14040. Epub 2023 Mar 5.
6
Progress developing the concept of other effective area-based conservation measures.
Conserv Biol. 2024 Feb;38(1):e14106. doi: 10.1111/cobi.14106. Epub 2023 Jul 28.
7
Enhancing synergies between action on ocean acidification and the post-2020 global biodiversity framework.
Conserv Biol. 2021 Apr;35(2):548-558. doi: 10.1111/cobi.13598. Epub 2020 Oct 5.
8
Lessons from COP15 on effective scientific engagement in biodiversity policy processes.
Conserv Biol. 2024 Apr;38(2):e14192. doi: 10.1111/cobi.14192. Epub 2023 Dec 1.
9
Matching biodiversity indicators to policy needs.
Conserv Biol. 2021 Apr;35(2):522-532. doi: 10.1111/cobi.13575. Epub 2020 Dec 21.
10
Poor data stewardship will hinder global genetic diversity surveillance.
Proc Natl Acad Sci U S A. 2021 Aug 24;118(34). doi: 10.1073/pnas.2107934118.

引用本文的文献

1
Drivers of genetic diversity across the marine tree of life.
bioRxiv. 2025 Jun 6:2025.06.03.657718. doi: 10.1101/2025.06.03.657718.
2
Global meta-analysis shows action is needed to halt genetic diversity loss.
Nature. 2025 Feb;638(8051):704-710. doi: 10.1038/s41586-024-08458-x. Epub 2025 Jan 29.
3
What is the real value of omics data? Enhancing research outcomes and securing long-term data excellence.
Nucleic Acids Res. 2024 Nov 11;52(20):12130-12140. doi: 10.1093/nar/gkae901.
6
COPO - Managing sample metadata for biodiversity: considerations from the Darwin Tree of Life project.
Wellcome Open Res. 2024 Jun 10;7:279. doi: 10.12688/wellcomeopenres.18499.2. eCollection 2022.
7
Best practices for genetic and genomic data archiving.
Nat Ecol Evol. 2024 Jul;8(7):1224-1232. doi: 10.1038/s41559-024-02423-7. Epub 2024 May 24.
8
Genomic Tools in Biological Invasions: Current State and Future Frontiers.
Genome Biol Evol. 2024 Jan 5;16(1). doi: 10.1093/gbe/evad230.
9
Journeying towards best practice data management in biodiversity genomics.
Mol Ecol Resour. 2025 Feb;25(2):e13880. doi: 10.1111/1755-0998.13880. Epub 2023 Oct 24.
10
Metadata integrity in bioinformatics: Bridging the gap between data and knowledge.
Comput Struct Biotechnol J. 2023 Oct 5;21:4895-4913. doi: 10.1016/j.csbj.2023.10.006. eCollection 2023.

本文引用的文献

1
Genetic diversity loss in the Anthropocene.
Science. 2022 Sep 23;377(6613):1431-1435. doi: 10.1126/science.abn5642. Epub 2022 Sep 22.
2
Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (EBVs) for genetic composition.
Biol Rev Camb Philos Soc. 2022 Aug;97(4):1511-1538. doi: 10.1111/brv.12852. Epub 2022 Apr 12.
5
Global Commitments to Conserving and Monitoring Genetic Diversity Are Now Necessary and Feasible.
Bioscience. 2021 May 26;71(9):964-976. doi: 10.1093/biosci/biab054. eCollection 2021 Sep.
6
Poor data stewardship will hinder global genetic diversity surveillance.
Proc Natl Acad Sci U S A. 2021 Aug 24;118(34). doi: 10.1073/pnas.2107934118.
8
A beginner's guide to low-coverage whole genome sequencing for population genomics.
Mol Ecol. 2021 Dec;30(23):5966-5993. doi: 10.1111/mec.16077. Epub 2021 Aug 31.
9
Promoting inclusive metrics of success and impact to dismantle a discriminatory reward system in science.
PLoS Biol. 2021 Jun 15;19(6):e3001282. doi: 10.1371/journal.pbio.3001282. eCollection 2021 Jun.
10
The critical importance of vouchers in genomics.
Elife. 2021 Jun 1;10:e68264. doi: 10.7554/eLife.68264.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验