Suppr超能文献

使用自监督深度学习从 fMRI 计算个性化脑功能网络。

Computing personalized brain functional networks from fMRI using self-supervised deep learning.

机构信息

Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.

Key Laboratory of Brain Circuit Real Time Tracing (BCRTT-Lab), Tianjin University Affiliated Tianjin Fourth Center Hospital; Department of Psychiatry, Tianjin Medical University, Tianjin, China.

出版信息

Med Image Anal. 2023 Apr;85:102756. doi: 10.1016/j.media.2023.102756. Epub 2023 Jan 21.

Abstract

A novel self-supervised deep learning (DL) method is developed to compute personalized brain functional networks (FNs) for characterizing brain functional neuroanatomy based on functional MRI (fMRI). Specifically, a DL model of convolutional neural networks with an encoder-decoder architecture is developed to compute personalized FNs directly from fMRI data. The DL model is trained to optimize functional homogeneity of personalized FNs without utilizing any external supervision in an end-to-end fashion. We demonstrate that a DL model trained on fMRI scans from the Human Connectome Project can identify personalized FNs and generalizes well across four different datasets. We further demonstrate that the identified personalized FNs are informative for predicting individual differences in behavior, brain development, and schizophrenia status. Taken together, the self-supervised DL allows for rapid, generalizable computation of personalized FNs.

摘要

一种新的自监督深度学习(DL)方法被开发出来,用于计算基于功能磁共振成像(fMRI)的个性化脑功能网络(FN),以描述脑功能神经解剖结构。具体来说,开发了一种具有编解码器架构的卷积神经网络的 DL 模型,以便直接从 fMRI 数据中计算个性化 FNs。该 DL 模型在没有任何外部监督的情况下,以端到端的方式进行训练,以优化个性化 FNs 的功能同质性。我们证明,在人类连接组计划的 fMRI 扫描上训练的 DL 模型可以识别个性化 FNs,并在四个不同的数据集上很好地推广。我们进一步证明,所识别的个性化 FNs 对于预测行为、大脑发育和精神分裂症状态的个体差异具有信息性。总之,自监督的 DL 允许快速、可推广地计算个性化 FNs。

相似文献

1
Computing personalized brain functional networks from fMRI using self-supervised deep learning.
Med Image Anal. 2023 Apr;85:102756. doi: 10.1016/j.media.2023.102756. Epub 2023 Jan 21.
2
20-fold Accelerated 7T fMRI Using Referenceless Self-Supervised Deep Learning Reconstruction.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3765-3769. doi: 10.1109/EMBC46164.2021.9631107.
3
Modeling Hierarchical Brain Networks via Volumetric Sparse Deep Belief Network.
IEEE Trans Biomed Eng. 2020 Jun;67(6):1739-1748. doi: 10.1109/TBME.2019.2945231. Epub 2019 Oct 23.
4
Characterizing functional brain networks via Spatio-Temporal Attention 4D Convolutional Neural Networks (STA-4DCNNs).
Neural Netw. 2023 Jan;158:99-110. doi: 10.1016/j.neunet.2022.11.004. Epub 2022 Nov 10.
5
Evolutional Neural Architecture Search for Optimization of Spatiotemporal Brain Network Decomposition.
IEEE Trans Biomed Eng. 2022 Feb;69(2):624-634. doi: 10.1109/TBME.2021.3102466. Epub 2022 Jan 20.
6
Physics-informed deep learning approach to quantification of human brain metabolites from magnetic resonance spectroscopy data.
Comput Biol Med. 2023 May;158:106837. doi: 10.1016/j.compbiomed.2023.106837. Epub 2023 Apr 5.
7
A Novel Method for Multi-subject fMRI Data Analysis: Independent Component Analysis with Clustering Embedded (ICA-CE).
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-5. doi: 10.1109/EMBC40787.2023.10339989.
8
Graph Autoencoders for Embedding Learning in Brain Networks and Major Depressive Disorder Identification.
IEEE J Biomed Health Inform. 2024 Mar;28(3):1644-1655. doi: 10.1109/JBHI.2024.3351177. Epub 2024 Mar 6.
9
Brain decoding of the Human Connectome Project tasks in a dense individual fMRI dataset.
Neuroimage. 2023 Dec 1;283:120395. doi: 10.1016/j.neuroimage.2023.120395. Epub 2023 Oct 12.
10
A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-state functional MRI data.
Med Image Anal. 2022 Jul;79:102471. doi: 10.1016/j.media.2022.102471. Epub 2022 May 7.

引用本文的文献

2
Self-Supervised Learning to Unveil Brain Dysfunctional Signatures in Brain Disorders: Methods and Applications.
Health Data Sci. 2025 Aug 5;5:0282. doi: 10.34133/hds.0282. eCollection 2025.
3
dFCExpert: Learning Dynamic Functional Connectivity Patterns with Modularity and State Experts.
bioRxiv. 2024 Dec 21:2024.12.20.629773. doi: 10.1101/2024.12.20.629773.
4
SpaRG: Sparsely Reconstructed Graphs for Generalizable fMRI Analysis.
Mach Learn Clin Neuroimaging (2024). 2025;15266:46-56. doi: 10.1007/978-3-031-78761-4_5. Epub 2024 Dec 6.
5
Self-supervised graph contrastive learning with diffusion augmentation for functional MRI analysis and brain disorder detection.
Med Image Anal. 2025 Apr;101:103403. doi: 10.1016/j.media.2024.103403. Epub 2024 Nov 29.
6
Magnetic resonance imaging-based machine learning classification of schizophrenia spectrum disorders: a meta-analysis.
Psychiatry Clin Neurosci. 2024 Dec;78(12):732-743. doi: 10.1111/pcn.13736. Epub 2024 Sep 18.
8
Net: A toolbox for personalized functional networks modeling.
bioRxiv. 2024 Apr 29:2024.04.26.591367. doi: 10.1101/2024.04.26.591367.
9
Prior-guided individualized thalamic parcellation based on local diffusion characteristics.
Hum Brain Mapp. 2024 Mar;45(4):e26646. doi: 10.1002/hbm.26646.
10
Individualized brain mapping for navigated neuromodulation.
Chin Med J (Engl). 2024 Mar 5;137(5):508-523. doi: 10.1097/CM9.0000000000002979. Epub 2024 Jan 24.

本文引用的文献

1
Sex differences in the functional topography of association networks in youth.
Proc Natl Acad Sci U S A. 2022 Aug 16;119(33):e2110416119. doi: 10.1073/pnas.2110416119. Epub 2022 Aug 8.
2
Linking Individual Differences in Personalized Functional Network Topography to Psychopathology in Youth.
Biol Psychiatry. 2022 Dec 15;92(12):973-983. doi: 10.1016/j.biopsych.2022.05.014. Epub 2022 May 18.
3
Dissociable multi-scale patterns of development in personalized brain networks.
Nat Commun. 2022 May 12;13(1):2647. doi: 10.1038/s41467-022-30244-4.
4
Personalized functional imaging identifies brain stimulation target for a patient with trauma-induced functional disruption.
Brain Stimul. 2022 Jan-Feb;15(1):53-56. doi: 10.1016/j.brs.2021.11.005. Epub 2021 Nov 5.
5
Evolutional Neural Architecture Search for Optimization of Spatiotemporal Brain Network Decomposition.
IEEE Trans Biomed Eng. 2022 Feb;69(2):624-634. doi: 10.1109/TBME.2021.3102466. Epub 2022 Jan 20.
6
Representation learning of resting state fMRI with variational autoencoder.
Neuroimage. 2021 Nov 1;241:118423. doi: 10.1016/j.neuroimage.2021.118423. Epub 2021 Jul 23.
7
4D Modeling of fMRI Data via Spatio-Temporal Convolutional Neural Networks (ST-CNN).
IEEE Trans Cogn Dev Syst. 2020 Sep;12(3):451-460. doi: 10.1109/tcds.2019.2916916. Epub 2019 May 14.
8
Differentiable neural architecture search for optimal spatial/temporal brain function network decomposition.
Med Image Anal. 2021 Apr;69:101974. doi: 10.1016/j.media.2021.101974. Epub 2021 Jan 20.
9
Modelling subject variability in the spatial and temporal characteristics of functional modes.
Neuroimage. 2020 Nov 15;222:117226. doi: 10.1016/j.neuroimage.2020.117226. Epub 2020 Aug 6.
10
Cortical surface registration using unsupervised learning.
Neuroimage. 2020 Nov 1;221:117161. doi: 10.1016/j.neuroimage.2020.117161. Epub 2020 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验