Suppr超能文献

胶原连接肽载体载万古霉素控释用于治疗创面感染。

Controlled Delivery of Vancomycin from Collagen-tethered Peptide Vehicles for the Treatment of Wound Infections.

机构信息

Department of Biomedical Engineering, University of Delaware, Newark, Delaware19713, United States.

Department of Materials Science and Engineering, University of Delaware, Newark, Delaware19716, United States.

出版信息

Mol Pharm. 2023 Mar 6;20(3):1696-1708. doi: 10.1021/acs.molpharmaceut.2c00898. Epub 2023 Jan 27.

Abstract

Despite the great promise of antibiotic therapy in wound infections, antibiotic resistance stemming from frequent dosing diminishes drug efficacy and contributes to recurrent infection. To identify improvements in antibiotic therapies, new antibiotic delivery systems that maximize pharmacological activity and minimize side effects are needed. In this study, we developed elastin-like peptide and collagen-like peptide nanovesicles (ECnVs) tethered to collagen-containing matrices to control vancomycin delivery and provide extended antibacterial effects against methicillin-resistant (MRSA). We observed that ECnVs showed enhanced entrapment efficacy of vancomycin by 3-fold as compared to liposome formulations. Additionally, ECnVs enabled the controlled release of vancomycin at a constant rate with zero-order kinetics, whereas liposomes exhibited first-order release kinetics. Moreover, ECnVs could be retained on both collagen-fibrin (co-gel) matrices and collagen-only matrices, with differential retention on the two biomaterials resulting in different local concentrations of released vancomycin. Overall, the biphasic release profiles of vancomycin from ECnVs/co-gel and ECnVs/collagen more effectively inhibited the growth of MRSA for 18 and 24 h, respectively, even after repeated bacterial inoculation, as compared to matrices containing free vancomycin, which just delayed the growth of MRSA. Thus, this newly developed antibiotic delivery system exhibited distinct advantages for controlled vancomycin delivery and prolonged antibacterial activity relevant to the treatment of wound infections.

摘要

尽管抗生素疗法在治疗伤口感染方面具有巨大的前景,但由于频繁给药导致的抗生素耐药性会降低药物疗效,并导致感染反复发作。为了寻找抗生素治疗方法的改进,需要开发新的抗生素递送系统,以最大限度地提高药理活性并最小化副作用。在这项研究中,我们开发了弹性蛋白样肽和胶原蛋白样肽纳米囊泡(ECnVs),将其连接到含有胶原蛋白的基质上,以控制万古霉素的递送,并提供针对耐甲氧西林金黄色葡萄球菌(MRSA)的延长抗菌作用。我们观察到,与脂质体制剂相比,ECnVs 使万古霉素的包封效率提高了 3 倍。此外,ECnVs 能够以零级动力学的恒速释放万古霉素,而脂质体则表现出一级释放动力学。此外,ECnVs 可以保留在胶原纤维蛋白(共凝胶)基质和仅胶原基质上,在两种生物材料上的保留情况不同,导致释放的万古霉素的局部浓度也不同。总的来说,ECnVs/共凝胶和 ECnVs/胶原中的万古霉素的双相释放曲线更有效地抑制了 MRSA 的生长,分别为 18 和 24 h,即使在重复细菌接种后也是如此,而含有游离万古霉素的基质仅能延迟 MRSA 的生长。因此,这种新开发的抗生素递送系统在控制万古霉素递送和延长抗菌活性方面具有明显的优势,与治疗伤口感染有关。

相似文献

1
Controlled Delivery of Vancomycin from Collagen-tethered Peptide Vehicles for the Treatment of Wound Infections.
Mol Pharm. 2023 Mar 6;20(3):1696-1708. doi: 10.1021/acs.molpharmaceut.2c00898. Epub 2023 Jan 27.
2
Encapsulation of collagen mimetic peptide-tethered vancomycin liposomes in collagen-based scaffolds for infection control in wounds.
Acta Biomater. 2020 Feb;103:115-128. doi: 10.1016/j.actbio.2019.12.014. Epub 2019 Dec 13.
3
Novel two-chain fatty acid-based lipids for development of vancomycin pH-responsive liposomes against and methicillin-resistant (MRSA).
J Drug Target. 2019 Dec;27(10):1094-1107. doi: 10.1080/1061186X.2019.1599380. Epub 2019 Apr 10.
5
Self-assembled oleylamine grafted hyaluronic acid polymersomes for delivery of vancomycin against methicillin resistant Staphylococcus aureus (MRSA).
Colloids Surf B Biointerfaces. 2019 Oct 1;182:110388. doi: 10.1016/j.colsurfb.2019.110388. Epub 2019 Jul 25.
6
Exploring the possible targeting strategies of liposomes against methicillin-resistant Staphylococcus aureus (MRSA).
Eur J Pharm Biopharm. 2021 Aug;165:84-105. doi: 10.1016/j.ejpb.2021.04.021. Epub 2021 May 8.
7
Sol-gel silica controlled release thin films for the inhibition of methicillin-resistant Staphylococcus aureus.
Biomaterials. 2014 Jan;35(1):509-17. doi: 10.1016/j.biomaterials.2013.09.073. Epub 2013 Oct 5.
9
Controlled Release of Drugs from Extracellular Matrix-Derived Peptide-Based Nanovesicles through Tailored Noncovalent Interactions.
Biomacromolecules. 2024 Apr 8;25(4):2408-2422. doi: 10.1021/acs.biomac.3c01361. Epub 2024 Mar 28.

引用本文的文献

1
Recent advances in extracellular matrix-inspired nanocarriers.
Expert Opin Drug Deliv. 2025 Jun 18:1-19. doi: 10.1080/17425247.2025.2519809.
2
Synthesis of a -GFOGER Adamantane-Based Collagen Mimetic Peptide Imbibed in a Hyaluronic Acid Hydrogel for Enhanced Wound Healing.
ACS Appl Bio Mater. 2025 Jun 16;8(6):4657-4672. doi: 10.1021/acsabm.4c01895. Epub 2025 Feb 19.
3
Failure or future? Exploring alternative antibacterials: a comparative analysis of antibiotics and naturally derived biopolymers.
Front Microbiol. 2025 Feb 3;16:1526250. doi: 10.3389/fmicb.2025.1526250. eCollection 2025.
4
Recent advances in nanostructured delivery systems for vancomycin.
Nanomedicine (Lond). 2024;19(23):1931-1951. doi: 10.1080/17435889.2024.2377063. Epub 2024 Aug 15.
5
Controlled Release of Drugs from Extracellular Matrix-Derived Peptide-Based Nanovesicles through Tailored Noncovalent Interactions.
Biomacromolecules. 2024 Apr 8;25(4):2408-2422. doi: 10.1021/acs.biomac.3c01361. Epub 2024 Mar 28.
6
Genetically Fusing Order-Promoting and Thermoresponsive Building Blocks to Design Hybrid Biomaterials.
Chemistry. 2024 May 28;30(30):e202400582. doi: 10.1002/chem.202400582. Epub 2024 Apr 10.
7
Electrospun Chitosan-Based Nanofibrous Coating for the Local and Sustained Release of Vancomycin.
ACS Omega. 2024 Feb 28;9(10):11701-11717. doi: 10.1021/acsomega.3c08113. eCollection 2024 Mar 12.
9
VEGF-Encoding, Gene-Activated Collagen-Based Matrices Promote Blood Vessel Formation and Improved Wound Repair.
ACS Appl Mater Interfaces. 2023 Apr 5;15(13):16434-16447. doi: 10.1021/acsami.2c23022. Epub 2023 Mar 24.

本文引用的文献

1
Platelet-mimicking procoagulant nanoparticles augment hemostasis in animal models of bleeding.
Sci Transl Med. 2022 Jan 26;14(629):eabb8975. doi: 10.1126/scitranslmed.abb8975.
2
Functional Hydrogels as Wound Dressing to Enhance Wound Healing.
ACS Nano. 2021 Aug 24;15(8):12687-12722. doi: 10.1021/acsnano.1c04206. Epub 2021 Aug 10.
3
Challenges in the management of chronic wound infections.
J Glob Antimicrob Resist. 2021 Sep;26:140-147. doi: 10.1016/j.jgar.2021.05.010. Epub 2021 Jun 16.
4
Exploring the possible targeting strategies of liposomes against methicillin-resistant Staphylococcus aureus (MRSA).
Eur J Pharm Biopharm. 2021 Aug;165:84-105. doi: 10.1016/j.ejpb.2021.04.021. Epub 2021 May 8.
5
Liposomes as a Nanoplatform to Improve the Delivery of Antibiotics into Biofilms.
Pharmaceutics. 2021 Mar 2;13(3):321. doi: 10.3390/pharmaceutics13030321.
7
Collagen-Based Artificial Corneal Scaffold with Anti-Infective Capability for Prevention of Perioperative Bacterial Infections.
ACS Biomater Sci Eng. 2015 Dec 14;1(12):1324-1334. doi: 10.1021/acsbiomaterials.5b00396. Epub 2015 Nov 11.
8
Multi-stimuli-responsive, liposome-crosslinked poly(ethylene glycol) hydrogels for drug delivery.
J Biomater Sci Polym Ed. 2021 Apr;32(5):635-656. doi: 10.1080/09205063.2020.1855392. Epub 2020 Dec 22.
10
Fine structural tuning of the assembly of ECM peptide conjugates via slight sequence modifications.
Sci Adv. 2020 Oct 7;6(41). doi: 10.1126/sciadv.abd3033. Print 2020 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验