Suppr超能文献

通过自噬调节,溶酶体双孔通道 2(TPC2)的药理学抑制在中风中提供神经保护作用。

Pharmacological inhibition of lysosomal two-pore channel 2 (TPC2) confers neuroprotection in stroke via autophagy regulation.

机构信息

Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via Sergio Pansini 5, Naples 80131, Italy.

Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, Ancona 60126, Italy.

出版信息

Neurobiol Dis. 2023 Mar;178:106020. doi: 10.1016/j.nbd.2023.106020. Epub 2023 Jan 26.

Abstract

Lysosomal function and organellar Ca homeostasis become dysfunctional in Stroke causing disturbances in autophagy, the major process for the degradation of abnormal protein aggregates and dysfunctional organelles. However, the role of autophagy in Stroke is controversial since excessive or prolonged autophagy activation exacerbates ischemic brain injury. Of note, glutamate evokes NAADP-dependent Ca release via lysosomal TPC2 channels thus controlling basal autophagy. Considering the massive release of excitotoxins in Stroke, autophagic flux becomes uncontrolled with abnormal formation of autophagosomes causing, in turn, disruption of excitotoxins clearance and neurodegeneration. Here, a fine regulation of autophagy via a proper pharmacological modulation of lysosomal TPC2 channel has been tested in preclinical Stroke models. Primary cortical neurons were subjected to oxygen and glucose deprivation+reoxygenation to reproduce in vitro brain ischemia. Focal brain ischemia was induced in rats by transient middle cerebral artery occlusion (tMCAO). Under these conditions, TPC2 protein expression as well as autophagy and endoplasmic reticulum (ER) stress markers were studied by Western blotting, while TPC2 localization and activity were measured by immunocytochemistry and single-cell video-imaging, respectively. TPC2 protein expression and immunosignal were highly modulated in primary cortical neurons exposed to extreme hypoxic conditions causing dysfunction in organellar Ca homeostasis, ER stress and autophagy-induced cell death. TPC2 knocking down and pharmacological inhibition by Ned-19 during hypoxia induced neuroprotection. The effect of Ned-19 was reversed by the permeable form of TPC2 endogenous agonist, NAADP-AM. Of note, Ned-19 prevented ER stress, as measured by GRP78 (78 kDa glucose-regulated protein) protein reduction and caspase 9 downregulation. In this way Ned-19 restored organellar Ca level. Interestingly, Ned-19 reduced the infarct volume and neurological deficits in rats subjected to tMCAO and prevented hypoxia-induced cell death by blocking autophagic flux. Collectively, the pharmacological inhibition of TPC2 lysosomal channel by Ned-19 protects from focal ischemia by hampering a hyperfunctional autophagy.

摘要

溶酶体功能和细胞器钙稳态在中风中变得功能失调,导致自噬紊乱,自噬是降解异常蛋白聚集体和功能失调细胞器的主要过程。然而,自噬在中风中的作用存在争议,因为过度或延长的自噬激活会加重缺血性脑损伤。值得注意的是,谷氨酸通过溶酶体 TPC2 通道引发 NAADP 依赖性 Ca 释放,从而控制基础自噬。考虑到中风时兴奋性毒素的大量释放,自噬流变得失控,异常形成自噬体,进而导致兴奋性毒素清除和神经退行性变的破坏。在这里,通过适当的溶酶体 TPC2 通道药理学调节来测试自噬的精细调节,已经在临床前中风模型中进行了测试。原代皮质神经元经历氧和葡萄糖剥夺+再氧合,以在体外模拟脑缺血。通过短暂性大脑中动脉闭塞(tMCAO)在大鼠中诱导局灶性脑缺血。在这些条件下,通过 Western blot 研究 TPC2 蛋白表达以及自噬和内质网(ER)应激标志物,通过免疫细胞化学和单细胞视频成像分别测量 TPC2 定位和活性。在暴露于极端低氧条件下的原代皮质神经元中,TPC2 蛋白表达和免疫信号高度调节,导致细胞器 Ca 稳态、ER 应激和自噬诱导的细胞死亡功能障碍。TPC2 敲低和 Ned-19 在缺氧期间通过 Ned-19 抑制 TPC2 的药理学抑制诱导神经保护。Ned-19 的作用可被 TPC2 内源性激动剂 NAADP-AM 的可渗透形式逆转。值得注意的是,Ned-19 可防止 ER 应激,如通过 GRP78(78 kDa 葡萄糖调节蛋白)蛋白减少和 caspase 9 下调来测量。通过这种方式,Ned-19 恢复了细胞器 Ca 水平。有趣的是,Ned-19 降低了 tMCAO 大鼠的梗死体积和神经功能缺损,并通过阻断自噬流防止缺氧诱导的细胞死亡。总的来说,通过 Ned-19 抑制 TPC2 溶酶体通道可通过阻碍过度功能的自噬来保护局灶性缺血。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验