Suppr超能文献

具有可编程组装成纳米结构水凝胶能力的强效超短抗菌肽的合理设计。

Rational design of potent ultrashort antimicrobial peptides with programmable assembly into nanostructured hydrogels.

作者信息

Cardoso Priscila, Appiah Danso Samuel, Hung Andrew, Dekiwadia Chaitali, Pradhan Nimish, Strachan Jamie, McDonald Brody, Firipis Kate, White Jacinta F, Aburto-Medina Arturo, Conn Charlotte E, Valéry Céline

机构信息

School of Health and Biomedical Sciences, Translational Immunology and Nanotechnology Theme, NanoBioPharm Research Group, RMIT University, Bundoora, VIC, Australia.

School of Science, STEM College, RMIT University, Melbourne, VIC, Australia.

出版信息

Front Chem. 2023 Jan 13;10:1009468. doi: 10.3389/fchem.2022.1009468. eCollection 2022.

Abstract

Microbial resistance to common antibiotics is threatening to cause the next pandemic crisis. In this context, antimicrobial peptides (AMPs) are receiving increased attention as an alternative approach to the traditional small molecule antibiotics. Here, we report the bi-functional rational design of Fmoc-peptides as both antimicrobial and hydrogelator substances. The tetrapeptide Fmoc-WWRR-NH-termed Priscilicidin-was rationally designed for antimicrobial activity and molecular self-assembly into nanostructured hydrogels. Molecular dynamics simulations predicted Priscilicidin to assemble in water into small oligomers and nanofibrils, through a balance of aromatic stacking, amphiphilicity and electrostatic repulsion. Antimicrobial activity prediction databases supported a strong antimicrobial motif sequence analogy. Experimentally, this ultrashort sequence showed a remarkable hydrogel forming capacity, combined to a potent antibacterial and antifungal activity, including against multidrug resistant strains. Using a set of biophysical and microbiology techniques, the peptide was shown to self-assemble into viscoelastic hydrogels, as a result of assembly into nanostructured hexagonal mesophases. To further test the molecular design approach, the Priscilicidin sequence was modified to include a proline turn-Fmoc-WPWRR-NH, termed P-Priscilicidin-expected to disrupt the supramolecular assembly into nanofibrils, while predicted to retain antimicrobial activity. Experiments showed P-Priscilicidin self-assembly to be effectively hindered by the presence of a proline turn, resulting in liquid samples of low viscosity. However, assembly into small oligomers and nanofibril precursors were evidenced. Our results augur well for fast, adaptable, and cost-efficient antimicrobial peptide design with programmable physicochemical properties.

摘要

微生物对常用抗生素的耐药性正威胁着引发下一场大流行危机。在此背景下,抗菌肽(AMPs)作为传统小分子抗生素的替代方法正受到越来越多的关注。在此,我们报告了Fmoc肽作为抗菌和水凝胶形成物质的双功能合理设计。四肽Fmoc-WWRR-NH(称为Priscilicidin)经合理设计具有抗菌活性并能自组装成纳米结构水凝胶。分子动力学模拟预测Priscilicidin在水中通过芳香堆积、两亲性和静电排斥的平衡组装成小寡聚物和纳米纤维。抗菌活性预测数据库支持了一个强大的抗菌基序序列类比。实验表明,这个超短序列具有显著的水凝胶形成能力,并兼具强大的抗菌和抗真菌活性,包括对多重耐药菌株。使用一系列生物物理和微生物学技术,该肽被证明能自组装成粘弹性水凝胶,这是组装成纳米结构六方中间相的结果。为了进一步测试分子设计方法,对Priscilicidin序列进行了修饰,加入了一个脯氨酸转角——Fmoc-WPWRR-NH,称为P-Priscilicidin——预计会破坏其超分子组装成纳米纤维,同时预计保留抗菌活性。实验表明,脯氨酸转角的存在有效地阻碍了P-Priscilicidin的自组装,导致形成低粘度的液体样品。然而,仍证明其组装成了小寡聚物和纳米纤维前体。我们的结果为快速、适应性强且经济高效的具有可编程物理化学性质的抗菌肽设计带来了良好的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3045/9881724/faf5f9518231/fchem-10-1009468-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验