Suppr超能文献

利用支持向量机识别生物标志物,了解三阴性乳腺癌的种族差异。

Identifying Biomarkers Using Support Vector Machine to Understand the Racial Disparity in Triple-Negative Breast Cancer.

机构信息

Department of Computer Science, Georgia State University, Atlanta, Georgia, USA.

Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, North Carolina, USA.

出版信息

J Comput Biol. 2023 Apr;30(4):502-517. doi: 10.1089/cmb.2022.0422. Epub 2023 Jan 30.

Abstract

With the properties of aggressive cancer and heterogeneous tumor biology, triple-negative breast cancer (TNBC) is a type of breast cancer known for its poor clinical outcome. The lack of estrogen, progesterone, and human epidermal growth factor receptor in the tumors of TNBC leads to fewer treatment options in clinics. The incidence of TNBC is higher in African American (AA) women compared with European American (EA) women with worse clinical outcomes. The significant factors responsible for the racial disparity in TNBC are socioeconomic lifestyle and tumor biology. The current study considered the open-source gene expression data of triple-negative breast cancer samples' racial information. We implemented a state-of-the-art classification Support Vector Machine (SVM) method with a recurrent feature elimination approach to the gene expression data to identify significant biomarkers deregulated in AA women and EA women. We also included Spearman's rho and Ward's linkage method in our feature selection workflow. Our proposed method generates 24 features/genes that can classify the AA and EA samples 98% accurately. We also performed the Kaplan-Meier analysis and log-rank test on the 24 features/genes. We only discussed the correlation between deregulated expression and cancer progression with a poor survival rate of 2 genes, and , out of 24 genes. We believe that further improvement of our method with a higher number of RNA-seq gene expression data will more accurately provide insight into racial disparity in TNBC.

摘要

三阴性乳腺癌(TNBC)是一种具有侵袭性和异质性肿瘤生物学特性的乳腺癌,其临床预后较差。TNBC 肿瘤缺乏雌激素、孕激素和人表皮生长因子受体,导致临床治疗选择较少。与欧洲裔美国女性相比,非洲裔美国女性的 TNBC 发病率更高,临床结局更差。导致 TNBC 中存在种族差异的重要因素是社会经济生活方式和肿瘤生物学。本研究考虑了三阴性乳腺癌样本种族信息的开源基因表达数据。我们对基因表达数据实施了最先进的分类支持向量机(SVM)方法,并采用递归特征消除方法,以识别在 AA 女性和 EA 女性中失调的显著生物标志物。我们还在特征选择工作流程中纳入了 Spearman's rho 和 Ward 链接方法。我们提出的方法生成了 24 个特征/基因,可以将 AA 和 EA 样本准确地分类为 98%。我们还对 24 个特征/基因进行了 Kaplan-Meier 分析和对数秩检验。我们仅讨论了 24 个基因中表达失调与癌症进展之间的相关性,其中 2 个基因 和 与较差的生存率相关。我们相信,通过使用更多的 RNA-seq 基因表达数据进一步改进我们的方法,将更准确地深入了解 TNBC 中的种族差异。

相似文献

1
Identifying Biomarkers Using Support Vector Machine to Understand the Racial Disparity in Triple-Negative Breast Cancer.
J Comput Biol. 2023 Apr;30(4):502-517. doi: 10.1089/cmb.2022.0422. Epub 2023 Jan 30.
2
Racial Disparities in Triple Negative Breast Cancer: A Review of the Role of Biologic and Non-biologic Factors.
Front Public Health. 2020 Dec 22;8:576964. doi: 10.3389/fpubh.2020.576964. eCollection 2020.
4
A novel role for KIFC1-MYH9 interaction in triple-negative breast cancer aggressiveness and racial disparity.
Cell Commun Signal. 2024 Jun 6;22(1):312. doi: 10.1186/s12964-024-01664-0.
7
Differences in the mutational landscape of triple-negative breast cancer in African Americans and Caucasians.
Breast Cancer Res Treat. 2017 Feb;161(3):491-499. doi: 10.1007/s10549-016-4062-y. Epub 2016 Dec 3.
9
Somatic mutations of triple-negative breast cancer: a comparison between Black and White women.
Breast Cancer Res Treat. 2020 Jul;182(2):503-509. doi: 10.1007/s10549-020-05693-4. Epub 2020 May 21.

引用本文的文献

1
Role of AI in empowering and redefining the oncology care landscape: perspective from a developing nation.
Front Digit Health. 2025 Mar 4;7:1550407. doi: 10.3389/fdgth.2025.1550407. eCollection 2025.
2
Global biomarker trends in triple-negative breast cancer research: a bibliometric analysis.
Int J Surg. 2024 Dec 1;110(12):7962-7983. doi: 10.1097/JS9.0000000000001799.

本文引用的文献

1
2
A Novel Defined Super-Enhancer Associated Gene Signature to Predict Prognosis in Patients With Diffuse Large B-Cell Lymphoma.
Front Genet. 2022 Jun 14;13:827840. doi: 10.3389/fgene.2022.827840. eCollection 2022.
3
A transcriptome-wide association study identifies susceptibility genes for Parkinson's disease.
NPJ Parkinsons Dis. 2021 Sep 9;7(1):79. doi: 10.1038/s41531-021-00221-7.
4
Pipeline for Analyzing Activity of Metabolic Pathways in Planktonic Communities Using Metatranscriptomic Data.
J Comput Biol. 2021 Aug;28(8):842-855. doi: 10.1089/cmb.2021.0053. Epub 2021 Jul 14.
7
Breast Cancer Mortality Rates Have Stopped Declining in U.S. Women Younger than 40 Years.
Radiology. 2021 Apr;299(1):143-149. doi: 10.1148/radiol.2021203476. Epub 2021 Feb 9.
8
Differential regulation of in gastric cancer by DNA methylation.
Epigenetics. 2022 Jan;17(1):110-116. doi: 10.1080/15592294.2021.1878724. Epub 2021 Feb 8.
9
Racial Disparities in Triple Negative Breast Cancer: A Review of the Role of Biologic and Non-biologic Factors.
Front Public Health. 2020 Dec 22;8:576964. doi: 10.3389/fpubh.2020.576964. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验