Suppr超能文献

基于 CT 的放射组学特征模型的建立与验证:用于多器官癌症患者总生存期的预测

Development and Validation of CT-Based Radiomics Signature for Overall Survival Prediction in Multi-organ Cancer.

机构信息

International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.

Department of Thoracic Surgery, Khanh Hoa General Hospital, Nha Trang, 65000, Vietnam.

出版信息

J Digit Imaging. 2023 Jun;36(3):911-922. doi: 10.1007/s10278-023-00778-0. Epub 2023 Jan 30.

Abstract

The malignant tumors in nature share some common morphological characteristics. Radiomics is not only images but also data; we think that a probability exists in a set of radiomics signatures extracted from CT scan images of one cancer tumor in one specific organ also be utilized for overall survival prediction in different types of cancers in different organs. The retrospective study enrolled four data sets of cancer patients in three different organs (420, 157, 137, and 191 patients for lung 1 training, lung 2 testing, and two external validation set: kidney and head and neck, respectively). In the training set, radiomics features were obtained from CT scan images, and essential features were chosen by LASSO algorithm. Univariable and multivariable analyses were then conducted to find a radiomics signature via Cox proportional hazard regression. The Kaplan-Meier curve was performed based on the risk score. The integrated time-dependent area under the ROC curve (iAUC) was calculated for each predictive model. In the training set, Kaplan-Meier curve classified patients as high or low-risk groups (p-value < 0.001; log-rank test). The risk score of radiomics signature was locked and independently evaluated in the testing set, and two external validation sets showed significant differences (p-value < 0.05; log-rank test). A combined model (radiomics + clinical) showed improved iAUC in lung 1, lung 2, head and neck, and kidney data set are 0.621 (95% CI 0.588, 0.654), 0.736 (95% CI 0.654, 0.819), 0.732 (95% CI 0.655, 0.809), and 0.834 (95% CI 0.722, 0.946), respectively. We believe that CT-based radiomics signatures for predicting overall survival in various cancer sites may exist.

摘要

自然发生的恶性肿瘤具有一些共同的形态学特征。放射组学不仅是图像,也是数据;我们认为,从特定器官的一个癌症肿瘤的 CT 扫描图像中提取的一组放射组学特征也存在一种可能性,可用于不同器官的不同类型癌症的总体生存预测。这项回顾性研究纳入了三个不同器官的四个癌症患者数据集(肺 1 训练集 420 例、肺 2 测试集 157 例、以及两个外部验证集:肾和头颈部,各 137 例和 191 例)。在训练集中,从 CT 扫描图像中获取放射组学特征,并通过 LASSO 算法选择基本特征。然后通过 Cox 比例风险回归进行单变量和多变量分析,以找到放射组学特征。根据风险评分绘制 Kaplan-Meier 曲线。计算每个预测模型的综合时间依赖性 ROC 曲线下面积(iAUC)。在训练集中,Kaplan-Meier 曲线将患者分为高风险或低风险组(p 值<0.001;对数秩检验)。将放射组学特征的风险评分锁定并在测试集中独立评估,两个外部验证集显示出显著差异(p 值<0.05;对数秩检验)。放射组学特征+临床的联合模型在肺 1、肺 2、头颈部和肾数据集的 iAUC 分别提高到 0.621(95%CI 0.588,0.654)、0.736(95%CI 0.654,0.819)、0.732(95%CI 0.655,0.809)和 0.834(95%CI 0.722,0.946)。我们相信,在各种癌症部位预测总体生存的基于 CT 的放射组学特征可能存在。

相似文献

1
Development and Validation of CT-Based Radiomics Signature for Overall Survival Prediction in Multi-organ Cancer.
J Digit Imaging. 2023 Jun;36(3):911-922. doi: 10.1007/s10278-023-00778-0. Epub 2023 Jan 30.
4
Outcome prediction in resectable lung adenocarcinoma patients: value of CT radiomics.
Eur Radiol. 2020 Sep;30(9):4952-4963. doi: 10.1007/s00330-020-06872-z. Epub 2020 Apr 30.
9
Radiomics from dual-energy CT-derived iodine maps predict lymph node metastasis in head and neck squamous cell carcinoma.
Radiol Med. 2024 Feb;129(2):252-267. doi: 10.1007/s11547-023-01750-2. Epub 2023 Nov 28.
10
[The value of spectral CT-based radiomics in preoperative prediction of lymph node metastasis of advanced gastric cancer].
Zhonghua Yi Xue Za Zhi. 2020 Jun 2;100(21):1617-1622. doi: 10.3760/cma.j.cn112137-20191113-02468.

引用本文的文献

1
The Clinical Value of Systemic Immune Inflammatory Index in Predicting the Prognosis of Patients with Bloodstream Infection.
J Inflamm Res. 2025 Jul 30;18:10181-10192. doi: 10.2147/JIR.S531272. eCollection 2025.

本文引用的文献

1
Overall Survival Prediction in Renal Cell Carcinoma Patients Using Computed Tomography Radiomic and Clinical Information.
J Digit Imaging. 2021 Oct;34(5):1086-1098. doi: 10.1007/s10278-021-00500-y. Epub 2021 Aug 11.
3
Early risk-assessment of patients with nasopharyngeal carcinoma: the added prognostic value of MR-based radiomics.
Transl Oncol. 2021 Oct;14(10):101180. doi: 10.1016/j.tranon.2021.101180. Epub 2021 Jul 15.
5
The impact of the variation of imaging parameters on the robustness of Computed Tomography radiomic features: A review.
Comput Biol Med. 2021 Jun;133:104400. doi: 10.1016/j.compbiomed.2021.104400. Epub 2021 Apr 16.
6
Are radiomics features universally applicable to different organs?
Cancer Imaging. 2021 Apr 7;21(1):31. doi: 10.1186/s40644-021-00400-y.
7
Radiomics-based machine learning model for efficiently classifying transcriptome subtypes in glioblastoma patients from MRI.
Comput Biol Med. 2021 May;132:104320. doi: 10.1016/j.compbiomed.2021.104320. Epub 2021 Mar 9.
9
Application of radiomics and machine learning in head and neck cancers.
Int J Biol Sci. 2021 Jan 1;17(2):475-486. doi: 10.7150/ijbs.55716. eCollection 2021.
10
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.
CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验