Suppr超能文献

通过光解笼和释放来理解大脑中的神经肽传递。

Understanding Neuropeptide Transmission in the Brain by Optical Uncaging and Release.

机构信息

Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States.

Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States.

出版信息

ACS Chem Neurosci. 2023 Feb 15;14(4):516-523. doi: 10.1021/acschemneuro.2c00684. Epub 2023 Jan 31.

Abstract

Neuropeptides are abundant and essential signaling molecules in the nervous system involved in modulating neural circuits and behavior. Neuropeptides are generally released extrasynaptically and signal via volume transmission through G-protein-coupled receptors (GPCR). Although substantive functional roles of neuropeptides have been discovered, many questions on neuropeptide transmission remain poorly understood, including the local diffusion and transmission properties in the brain extracellular space. To address this challenge, intensive efforts are required to develop advanced tools for releasing and detecting neuropeptides with high spatiotemporal resolution. Because of the rapid development of biosensors and materials science, emerging tools are beginning to provide a better understanding of neuropeptide transmission. In this perspective, we summarize the fundamental advances in understanding neuropeptide transmission over the past decade, highlight the tools for releasing neuropeptides with high spatiotemporal solution in the brain, and discuss open questions and future directions in the field.

摘要

神经肽是神经系统中丰富且重要的信号分子,参与调节神经回路和行为。神经肽通常通过缝隙连接以外的方式释放,并通过与 G 蛋白偶联受体 (GPCR) 相互作用来实现体积传递信号。尽管已经发现了神经肽的实质性功能作用,但神经肽传递仍有许多问题尚未得到很好的理解,包括脑细胞外空间中的局部扩散和传输特性。为了解决这一挑战,需要付出巨大努力来开发具有高时空分辨率的释放和检测神经肽的先进工具。由于生物传感器和材料科学的快速发展,新兴工具开始为更好地理解神经肽传递提供帮助。在本观点中,我们总结了过去十年中对神经肽传递的基本认识的进展,重点介绍了在大脑中具有高时空分辨率释放神经肽的工具,并讨论了该领域的开放性问题和未来方向。

相似文献

1
Understanding Neuropeptide Transmission in the Brain by Optical Uncaging and Release.
ACS Chem Neurosci. 2023 Feb 15;14(4):516-523. doi: 10.1021/acschemneuro.2c00684. Epub 2023 Jan 31.
3
Current and emerging methods for probing neuropeptide transmission.
Curr Opin Neurobiol. 2023 Aug;81:102751. doi: 10.1016/j.conb.2023.102751. Epub 2023 Jul 22.
4
Emerging approaches for decoding neuropeptide transmission.
Trends Neurosci. 2022 Dec;45(12):899-912. doi: 10.1016/j.tins.2022.09.005. Epub 2022 Oct 15.
6
Bombyx neuropeptide G protein-coupled receptor A14 and A15 are two functional G protein-coupled receptors for CCHamide neuropeptides.
Insect Biochem Mol Biol. 2021 Apr;131:103553. doi: 10.1016/j.ibmb.2021.103553. Epub 2021 Feb 11.
7
Probing Neuropeptide Volume Transmission In Vivo by Simultaneous Near-Infrared Light-Triggered Release and Optical Sensing.
Angew Chem Int Ed Engl. 2022 Aug 22;61(34):e202206122. doi: 10.1002/anie.202206122. Epub 2022 Jul 8.
8
Mini-review: the evolution of neuropeptide signaling.
Regul Pept. 2012 Aug 10;177 Suppl:S6-9. doi: 10.1016/j.regpep.2012.05.001.
9
Receptors of peptides as therapeutic targets in epilepsy research.
Curr Med Chem. 2014;21(6):764-87. doi: 10.2174/0929867320666131119154018.
10
neuropeptide G protein-coupled receptor A7 is the third cognate receptor for short neuropeptide F from silkworm.
J Biol Chem. 2017 Dec 15;292(50):20599-20612. doi: 10.1074/jbc.M117.815191. Epub 2017 Oct 30.

引用本文的文献

1
FLP-15 functions through the GPCR NPR-3 to regulate local and global search behaviours in .
bioRxiv. 2025 May 8:2025.05.02.651881. doi: 10.1101/2025.05.02.651881.
2
Current Status and Future Strategies for Advancing Functional Circuit Mapping .
J Neurosci. 2023 Nov 8;43(45):7587-7598. doi: 10.1523/JNEUROSCI.1391-23.2023.
3
A Biomimetic C-Terminal Extension Strategy for Photocaging Amidated Neuropeptides.
J Am Chem Soc. 2023 Sep 13;145(36):19611-19621. doi: 10.1021/jacs.3c03913. Epub 2023 Aug 31.

本文引用的文献

1
A tool kit of highly selective and sensitive genetically encoded neuropeptide sensors.
Science. 2023 Nov 17;382(6672):eabq8173. doi: 10.1126/science.abq8173.
2
Optical control of neuronal activities with photoswitchable nanovesicles.
Nano Res. 2023 Jan;16(1):1033-1041. doi: 10.1007/s12274-022-4853-x. Epub 2022 Sep 2.
3
A genetically encoded sensor measures temporal oxytocin release from different neuronal compartments.
Nat Biotechnol. 2023 Jul;41(7):944-957. doi: 10.1038/s41587-022-01561-2. Epub 2023 Jan 2.
4
A fluorescent sensor for real-time measurement of extracellular oxytocin dynamics in the brain.
Nat Methods. 2022 Oct;19(10):1286-1294. doi: 10.1038/s41592-022-01597-x. Epub 2022 Sep 22.
5
The neuropeptide landscape of human prefrontal cortex.
Proc Natl Acad Sci U S A. 2022 Aug 16;119(33):e2123146119. doi: 10.1073/pnas.2123146119. Epub 2022 Aug 10.
6
Probing Neuropeptide Volume Transmission In Vivo by Simultaneous Near-Infrared Light-Triggered Release and Optical Sensing.
Angew Chem Int Ed Engl. 2022 Aug 22;61(34):e202206122. doi: 10.1002/anie.202206122. Epub 2022 Jul 8.
7
Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators.
Nat Rev Neurosci. 2022 May;23(5):257-274. doi: 10.1038/s41583-022-00577-6. Epub 2022 Mar 31.
8
A genetically encoded sensor for in vivo imaging of orexin neuropeptides.
Nat Methods. 2022 Feb;19(2):231-241. doi: 10.1038/s41592-021-01390-2. Epub 2022 Feb 10.
10
Release of endogenous dynorphin opioids in the prefrontal cortex disrupts cognition.
Neuropsychopharmacology. 2021 Dec;46(13):2330-2339. doi: 10.1038/s41386-021-01168-2. Epub 2021 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验