Suppr超能文献

用于电化学CO还原的新兴材料:碳基单原子催化剂的进展与优化策略

Emerging materials for electrochemical CO reduction: progress and optimization strategies of carbon-based single-atom catalysts.

作者信息

Qu Guangfei, Wei Kunling, Pan Keheng, Qin Jin, Lv Jiaxin, Li Junyan, Ning Ping

机构信息

Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan 650500, China.

出版信息

Nanoscale. 2023 Feb 23;15(8):3666-3692. doi: 10.1039/d2nr06190b.

Abstract

The electrochemical CO reduction reaction can effectively convert CO into promising fuels and chemicals, which is helpful in establishing a low-carbon emission economy. Compared with other types of electrocatalysts, single-atom catalysts (SACs) immobilized on carbon substrates are considered to be promising candidate catalysts. Atomically dispersed SACs exhibit excellent catalytic performance in CORR due to their maximum atomic utilization, unique electronic structure, and coordination environment. In this paper, we first briefly introduce the synthetic strategies and characterization techniques of SACs. Then, we focus on the optimization strategies of the atomic structure of carbon-based SACs, including adjusting the coordination atoms and coordination numbers, constructing the axial chemical environment, and regulating the carbon substrate, focusing on exploring the structure-performance relationship of SACs in the CORR process. In addition, this paper also briefly introduces the diatomic catalysts (DACs) as an extension of SACs. At the end of the paper, we summarize the article with an exciting outlook discussing the current challenges and prospects for research on the application of SACs in CORR.

摘要

电化学CO还原反应能够有效地将CO转化为有前景的燃料和化学品,这有助于建立低碳排放经济。与其他类型的电催化剂相比,负载在碳基底上的单原子催化剂(SAC)被认为是很有前景的候选催化剂。原子级分散的SAC由于其最大的原子利用率、独特的电子结构和配位环境,在CO还原反应(CORR)中表现出优异的催化性能。在本文中,我们首先简要介绍SAC的合成策略和表征技术。然后,我们重点关注碳基SAC原子结构的优化策略,包括调整配位原子和配位数、构建轴向化学环境以及调控碳基底,着重探索SAC在CORR过程中的结构-性能关系。此外,本文还简要介绍了作为SAC扩展的双原子催化剂(DAC)。在文章结尾,我们以令人兴奋的展望总结了本文,讨论了SAC在CORR应用研究中的当前挑战和前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验