Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802.
Center for Structural Biology, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA 16802.
Proc Natl Acad Sci U S A. 2023 Feb 14;120(7):e2218516120. doi: 10.1073/pnas.2218516120. Epub 2023 Feb 6.
NusG is a transcription elongation factor that stimulates transcription pausing in Gram+ bacteria including by sequence-specific interaction with a conserved pause-inducing TTNTTT motif found in the non-template DNA (ntDNA) strand within the transcription bubble. To reveal the structural basis of NusG-dependent pausing, we determined a cryo-EM structure of a paused transcription complex (PTC) containing RNA polymerase (RNAP), NusG, and the TTNTTT motif in the ntDNA strand. The interaction of NusG with the ntDNA strand rearranges the transcription bubble by positioning three consecutive T residues in a cleft between NusG and the β-lobe domain of RNAP. We revealed that the RNAP swivel module rotation (swiveling), which widens (swiveled state) and narrows (non-swiveled state) a cleft between NusG and the β-lobe, is an intrinsic motion of RNAP and is directly linked to trigger loop (TL) folding, an essential conformational change of all cellular RNAPs for the RNA synthesis reaction. We also determined cryo-EM structures of RNAP escaping from the paused transcription state. These structures revealed the NusG-dependent pausing mechanism by which NusG-ntDNA interaction inhibits the transition from swiveled to non-swiveled states, thereby preventing TL folding and RNA synthesis allosterically. This motion is also reduced by the formation of an RNA hairpin within the RNA exit channel. Thus, the pause half-life can be modulated by the strength of the NusG-ntDNA interaction and/or the stability of the RNA hairpin. NusG residues that interact with the TTNTTT motif are widely conserved in bacteria, suggesting that NusG-dependent pausing is widespread.
NusG 是一种转录延伸因子,它通过与转录泡中非模板 DNA(ntDNA)链上保守的暂停诱导 TTNTTT 基序的序列特异性相互作用,刺激包括革兰氏阳性菌在内的细菌中的转录暂停。为了揭示 NusG 依赖性暂停的结构基础,我们确定了含有 RNA 聚合酶(RNAP)、NusG 和 ntDNA 链上 TTNTTT 基序的暂停转录复合物(PTC)的低温电镜结构。NusG 与 ntDNA 链的相互作用通过将三个连续的 T 残基定位在 NusG 和 RNAP 的β- lobe 结构域之间的裂隙中来重新排列转录泡。我们揭示了 RNAP 旋转模块旋转(旋转),其加宽(旋转状态)和变窄(非旋转状态)NusG 和β- lobe 之间的裂隙,是 RNAP 的固有运动,并且直接与触发环(TL)折叠相关,TL 折叠是所有细胞型 RNA 聚合酶进行 RNA 合成反应的必需构象变化。我们还确定了 RNAP 从暂停转录状态逃逸的低温电镜结构。这些结构揭示了 NusG 依赖性暂停机制,其中 NusG-ntDNA 相互作用抑制从旋转状态到非旋转状态的转变,从而阻止 TL 折叠和 RNA 合成变构。这种运动也会因 RNA 出口通道内 RNA 发夹的形成而减少。因此,暂停半衰期可以通过 NusG-ntDNA 相互作用的强度和/或 RNA 发夹的稳定性来调节。与 TTNTTT 基序相互作用的 NusG 残基在细菌中广泛保守,表明 NusG 依赖性暂停很普遍。