Suppr超能文献

叶片基部的各向异性细胞生长促进拟南芥叶片形状的年龄相关变化。

Anisotropic cell growth at the leaf base promotes age-related changes in leaf shape in Arabidopsis thaliana.

机构信息

National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China.

University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China.

出版信息

Plant Cell. 2023 Apr 20;35(5):1386-1407. doi: 10.1093/plcell/koad031.

Abstract

Plants undergo extended morphogenesis. The shoot apical meristem (SAM) allows for reiterative development and the formation of new structures throughout the life of the plant. Intriguingly, the SAM produces morphologically different leaves in an age-dependent manner, a phenomenon known as heteroblasty. In Arabidopsis thaliana, the SAM produces small orbicular leaves in the juvenile phase, but gives rise to large elliptical leaves in the adult phase. Previous studies have established that a developmental decline of microRNA156 (miR156) is necessary and sufficient to trigger this leaf shape switch, although the underlying mechanism is poorly understood. Here we show that the gradual increase in miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE transcription factors with age promotes cell growth anisotropy in the abaxial epidermis at the base of the leaf blade, evident by the formation of elongated giant cells. Time-lapse imaging and developmental genetics further revealed that the establishment of adult leaf shape is tightly associated with the longitudinal cell expansion of giant cells, accompanied by a prolonged cell proliferation phase in their vicinity. Our results thus provide a plausible cellular mechanism for heteroblasty in Arabidopsis, and contribute to our understanding of anisotropic growth in plants.

摘要

植物经历了广泛的形态发生。茎尖分生组织(SAM)允许在植物的整个生命周期中进行反复的发育和新结构的形成。有趣的是,SAM 以年龄依赖的方式产生形态上不同的叶子,这种现象被称为异形发生。在拟南芥中,SAM 在幼年期产生小的圆形叶子,但在成年期产生大的椭圆形叶子。以前的研究已经确定,miR156(microRNA156)的发育下降是触发这种叶片形状转变所必需和充分的,尽管其潜在机制尚不清楚。在这里,我们表明,随着年龄的增长,miR156 靶向 SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 转录因子的逐渐增加促进了叶片基部的下表皮细胞生长的各向异性,这可以通过形成伸长的巨型细胞来证明。延时成像和发育遗传学进一步表明,成年叶片形状的建立与巨型细胞的纵向细胞扩张紧密相关,伴随着其附近细胞增殖阶段的延长。因此,我们的研究结果为拟南芥异形发生提供了一个合理的细胞机制,并有助于我们理解植物的各向异性生长。

相似文献

3
Molecular and Hormonal Regulation of Leaf Morphogenesis in Arabidopsis.
Int J Mol Sci. 2020 Jul 20;21(14):5132. doi: 10.3390/ijms21145132.
5
Cell division in the shoot apical meristem is a trigger for miR156 decline and vegetative phase transition in .
Proc Natl Acad Sci U S A. 2021 Nov 16;118(46). doi: 10.1073/pnas.2115667118.
6
Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana.
Plant Cell. 2008 May;20(5):1231-43. doi: 10.1105/tpc.108.058180. Epub 2008 May 20.
7
Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice.
Plant Physiol. 2012 Mar;158(3):1382-94. doi: 10.1104/pp.111.190488. Epub 2012 Jan 23.
9
A spatiotemporally regulated transcriptional complex underlies heteroblastic development of leaf hairs in .
EMBO J. 2019 Apr 15;38(8). doi: 10.15252/embj.2018100063. Epub 2019 Mar 6.

引用本文的文献

3
Genetic Evidence of in Leaf Morphology Variation of 'Mojo'.
Genes (Basel). 2024 Aug 28;15(9):1132. doi: 10.3390/genes15091132.
5
Leaf form diversity and evolution: a never-ending story in plant biology.
J Plant Res. 2024 Jul;137(4):547-560. doi: 10.1007/s10265-024-01541-4. Epub 2024 Apr 9.
6
Anatomical Mechanisms of Leaf Blade Morphogenesis in 'Aureostriatus'.
Plants (Basel). 2024 Jan 23;13(3):332. doi: 10.3390/plants13030332.
7
Temporal regulation of vegetative phase change in plants.
Dev Cell. 2024 Jan 8;59(1):4-19. doi: 10.1016/j.devcel.2023.11.010.
8
RcSPL1-RcTAF15b regulates the flowering time of rose ().
Hortic Res. 2023 Apr 25;10(6):uhad083. doi: 10.1093/hr/uhad083. eCollection 2023 Jun.
9
Shape-shifting leaves depend on SPL10.
Plant Cell. 2023 Apr 20;35(5):1292-1293. doi: 10.1093/plcell/koad046.

本文引用的文献

1
A robust mechanism for resetting juvenility during each generation in Arabidopsis.
Nat Plants. 2022 Mar;8(3):257-268. doi: 10.1038/s41477-022-01110-4. Epub 2022 Mar 21.
2
Cell division in the shoot apical meristem is a trigger for miR156 decline and vegetative phase transition in .
Proc Natl Acad Sci U S A. 2021 Nov 16;118(46). doi: 10.1073/pnas.2115667118.
3
A single-cell analysis of the Arabidopsis vegetative shoot apex.
Dev Cell. 2021 Apr 5;56(7):1056-1074.e8. doi: 10.1016/j.devcel.2021.02.021. Epub 2021 Mar 15.
4
Redundant and specific roles of individual MIR172 genes in plant development.
PLoS Biol. 2021 Feb 2;19(2):e3001044. doi: 10.1371/journal.pbio.3001044. eCollection 2021 Feb.
5
Juvenile Leaves or Adult Leaves: Determinants for Vegetative Phase Change in Flowering Plants.
Int J Mol Sci. 2020 Dec 21;21(24):9753. doi: 10.3390/ijms21249753.
6
A WOX/Auxin Biosynthesis Module Controls Growth to Shape Leaf Form.
Curr Biol. 2020 Dec 21;30(24):4857-4868.e6. doi: 10.1016/j.cub.2020.09.037. Epub 2020 Oct 8.
7
Microtubule-Mediated Wall Anisotropy Contributes to Leaf Blade Flattening.
Curr Biol. 2020 Oct 19;30(20):3972-3985.e6. doi: 10.1016/j.cub.2020.07.076. Epub 2020 Sep 10.
8
Chromatin Accessibility Dynamics and a Hierarchical Transcriptional Regulatory Network Structure for Plant Somatic Embryogenesis.
Dev Cell. 2020 Sep 28;54(6):742-757.e8. doi: 10.1016/j.devcel.2020.07.003. Epub 2020 Aug 4.
9
Nitrate Defines Shoot Size through Compensatory Roles for Endoreplication and Cell Division in Arabidopsis thaliana.
Curr Biol. 2020 Jun 8;30(11):1988-2000.e3. doi: 10.1016/j.cub.2020.03.036. Epub 2020 Apr 16.
10
Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells.
Science. 2020 Feb 28;367(6481):1003-1007. doi: 10.1126/science.aaz5103.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验