Suppr超能文献

基于基因表达数据的不同乳腺癌预后评分评估与比较。

Evaluation and comparison of different breast cancer prognosis scores based on gene expression data.

机构信息

Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK.

MRC Biostatistics Unit, University of Cambridge, East Forvie Building, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge, CB2 0SR, UK.

出版信息

Breast Cancer Res. 2023 Feb 8;25(1):17. doi: 10.1186/s13058-023-01612-9.

Abstract

BACKGROUND

Breast cancer is one of the three most common cancers worldwide and is the most common malignancy in women. Treatment approaches for breast cancer are diverse and varied. Clinicians must balance risks and benefits when deciding treatments, and models have been developed to support this decision-making. Genomic risk scores (GRSs) may offer greater clinical value than standard clinicopathological models, but there is limited evidence as to whether these models perform better than the current clinical standard of care.

METHODS

PREDICT and GRSs were adapted using data from the original papers. Univariable Cox proportional hazards models were produced with breast cancer-specific survival (BCSS) as the outcome. Independent predictors of BCSS were used to build multivariable models with PREDICT. Signatures which provided independent prognostic information in multivariable models were incorporated into the PREDICT algorithm and assessed for calibration, discrimination and reclassification.

RESULTS

EndoPredict, MammaPrint and Prosigna demonstrated prognostic power independent of PREDICT in multivariable models for ER-positive patients; no score predicted BCSS in ER-negative patients. Incorporating these models into PREDICT had only a modest impact upon calibration (with absolute improvements of 0.2-0.8%), discrimination (with no statistically significant c-index improvements) and reclassification (with 4-10% of patients being reclassified).

CONCLUSION

Addition of GRSs to PREDICT had limited impact on model fit or treatment received. This analysis does not support widespread adoption of current GRSs based on our implementations of commercial products.

摘要

背景

乳腺癌是全球最常见的三种癌症之一,也是女性最常见的恶性肿瘤。乳腺癌的治疗方法多种多样。临床医生在决定治疗方法时必须权衡风险和收益,为此已经开发了模型来支持这一决策。基因组风险评分(GRS)可能比标准临床病理模型具有更大的临床价值,但关于这些模型是否比当前的临床标准护理表现更好的证据有限。

方法

使用原始论文中的数据对 PREDICT 和 GRS 进行了改编。使用乳腺癌特异性生存(BCSS)作为结果生成单变量 Cox 比例风险模型。使用多变量模型中的独立预测因子构建 PREDICT 模型。在多变量模型中提供独立预后信息的特征被纳入 PREDICT 算法,并评估其校准、区分和重新分类。

结果

EndoPredict、MammaPrint 和 Prosigna 在 ER 阳性患者的多变量模型中独立于 PREDICT 具有预后能力;没有评分预测 ER 阴性患者的 BCSS。将这些模型纳入 PREDICT 对校准(绝对改善 0.2-0.8%)、区分(无统计学意义的 c 指数改善)和重新分类(4-10%的患者重新分类)的影响仅略有改善。

结论

将 GRS 添加到 PREDICT 对模型拟合或治疗效果的影响有限。根据我们对商业产品的实施,这项分析不支持广泛采用当前的 GRS。

相似文献

1
Evaluation and comparison of different breast cancer prognosis scores based on gene expression data.
Breast Cancer Res. 2023 Feb 8;25(1):17. doi: 10.1186/s13058-023-01612-9.
8
Multigene prognostic tests in breast cancer: past, present, future.
Breast Cancer Res. 2015 Jan 27;17(1):11. doi: 10.1186/s13058-015-0514-2.
9
Gene Expression Profiling Tests for Early-Stage Invasive Breast Cancer: A Health Technology Assessment.
Ont Health Technol Assess Ser. 2020 Mar 6;20(10):1-234. eCollection 2020.
10
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.

引用本文的文献

6
Molecular subtyping improves breast cancer diagnosis in the Copenhagen Breast Cancer Genomics Study.
JCI Insight. 2024 Apr 8;9(7):e178114. doi: 10.1172/jci.insight.178114.
7
Editorial: Cancer genomics in the era of precision medicine.
Front Genet. 2024 Feb 16;15:1378917. doi: 10.3389/fgene.2024.1378917. eCollection 2024.
8
An updated PREDICT breast cancer prognostic model including the benefits and harms of radiotherapy.
NPJ Breast Cancer. 2024 Jan 15;10(1):6. doi: 10.1038/s41523-024-00612-y.
9
Hepatitis C virus may accelerate breast cancer progression by increasing mutant p53 and c-Myc oncoproteins circulating levels.
Breast Cancer. 2024 Jan;31(1):116-123. doi: 10.1007/s12282-023-01519-5. Epub 2023 Nov 16.

本文引用的文献

1
Cancer statistics for the year 2020: An overview.
Int J Cancer. 2021 Apr 5. doi: 10.1002/ijc.33588.
2
Calibration: the Achilles heel of predictive analytics.
BMC Med. 2019 Dec 16;17(1):230. doi: 10.1186/s12916-019-1466-7.
4
Dynamics of breast-cancer relapse reveal late-recurring ER-positive genomic subgroups.
Nature. 2019 Mar;567(7748):399-404. doi: 10.1038/s41586-019-1007-8. Epub 2019 Mar 13.
5
Breast Cancer Treatment: A Review.
JAMA. 2019 Jan 22;321(3):288-300. doi: 10.1001/jama.2018.19323.
7
Clinical application and utility of genomic assays in early-stage breast cancer: key lessons learned to date.
Curr Oncol. 2018 Jun;25(Suppl 1):S125-S130. doi: 10.3747/co.25.3814. Epub 2018 Jun 13.
9
Breast Cancer Epidemiology, Prevention, and Screening.
Prog Mol Biol Transl Sci. 2017;151:1-32. doi: 10.1016/bs.pmbts.2017.07.002. Epub 2017 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验