Suppr超能文献

基于结构的内质网 α-葡萄糖苷酶 I 的强效亚氨基糖抑制剂的设计及其抗 SARS-CoV-2 活性。

Structure-Based Design of Potent Iminosugar Inhibitors of Endoplasmic Reticulum α-Glucosidase I with Anti-SARS-CoV-2 Activity.

机构信息

University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States.

Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, United States.

出版信息

J Med Chem. 2023 Feb 23;66(4):2744-2760. doi: 10.1021/acs.jmedchem.2c01750. Epub 2023 Feb 10.

Abstract

Enveloped viruses depend on the host endoplasmic reticulum (ER) quality control (QC) machinery for proper glycoprotein folding. The endoplasmic reticulum quality control (ERQC) enzyme α-glucosidase I (α-GluI) is an attractive target for developing broad-spectrum antivirals. We synthesized 28 inhibitors designed to interact with all four subsites of the α-GluI active site. These inhibitors are derivatives of the iminosugars 1-deoxynojirimycin (1-DNJ) and valiolamine. Crystal structures of ER α-GluI bound to 25 1-DNJ and three valiolamine derivatives revealed the basis for inhibitory potency. We established the structure-activity relationship (SAR) and used the Site Identification by Ligand Competitive Saturation (SILCS) method to develop a model for predicting α-GluI inhibition. We screened the compounds against SARS-CoV-2 to identify those with greater antiviral activity than the benchmark α-glucosidase inhibitor UV-4. These host-targeting compounds are candidates for investigation in animal models of SARS-CoV-2 and for testing against other viruses that rely on ERQC for correct glycoprotein folding.

摘要

包膜病毒依赖于宿主内质网(ER)质量控制系统(QC)来正确折叠糖蛋白。内质网质量控制系统(ERQC)酶α-葡萄糖苷酶 I(α-GluI)是开发广谱抗病毒药物的有吸引力的靶标。我们合成了 28 种抑制剂,旨在与α-GluI 活性位点的所有四个亚位点相互作用。这些抑制剂是 1-去氧野尻霉素(1-DNJ)和沃利醇胺的衍生物。与 ER α-GluI 结合的 25 个 1-DNJ 和三个沃利醇胺衍生物的晶体结构揭示了抑制效力的基础。我们建立了结构-活性关系(SAR),并使用配体竞争性饱和的位点鉴定(SILCS)方法来开发预测α-GluI 抑制的模型。我们筛选了这些化合物对 SARS-CoV-2 的抗病毒活性,以鉴定出比基准α-葡萄糖苷酶抑制剂 UV-4 具有更高抗病毒活性的化合物。这些针对宿主的化合物是在 SARS-CoV-2 动物模型中进行研究以及针对其他依赖 ERQC 正确折叠糖蛋白的病毒进行测试的候选药物。

相似文献

1
Structure-Based Design of Potent Iminosugar Inhibitors of Endoplasmic Reticulum α-Glucosidase I with Anti-SARS-CoV-2 Activity.
J Med Chem. 2023 Feb 23;66(4):2744-2760. doi: 10.1021/acs.jmedchem.2c01750. Epub 2023 Feb 10.
2
N-Substituted Valiolamine Derivatives as Potent Inhibitors of Endoplasmic Reticulum α-Glucosidases I and II with Antiviral Activity.
J Med Chem. 2021 Dec 23;64(24):18010-18024. doi: 10.1021/acs.jmedchem.1c01377. Epub 2021 Dec 6.
3
4
Structures of mammalian ER α-glucosidase II capture the binding modes of broad-spectrum iminosugar antivirals.
Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):E4630-8. doi: 10.1073/pnas.1604463113. Epub 2016 Jul 26.
5
ToP-DNJ, a Selective Inhibitor of Endoplasmic Reticulum α-Glucosidase II Exhibiting Antiflaviviral Activity.
ACS Chem Biol. 2018 Jan 19;13(1):60-65. doi: 10.1021/acschembio.7b00870. Epub 2017 Dec 5.
6
Inhibition of α-glucosidase activity by N-deoxynojirimycin analogs in several insect phloem sap feeders.
Insect Sci. 2016 Feb;23(1):59-67. doi: 10.1111/1744-7917.12229. Epub 2015 Aug 18.
7
In Planta Preliminary Screening of ER Glycoprotein Folding Quality Control (ERQC) Modulators.
Int J Mol Sci. 2018 Jul 23;19(7):2135. doi: 10.3390/ijms19072135.
8
Antiviral therapies targeting host ER alpha-glucosidases: current status and future directions.
Antiviral Res. 2013 Sep;99(3):251-60. doi: 10.1016/j.antiviral.2013.06.011. Epub 2013 Jun 29.
10

引用本文的文献

1
Insights into the Activities and Usefulness of Deoxynojirimycin and : A Comprehensive Review.
Molecules. 2025 Jul 31;30(15):3213. doi: 10.3390/molecules30153213.
3
Small glycomimetic antagonists of the cytomegalovirus glycoprotein UL141 prevent binding to TRAIL death receptor.
J Biol Chem. 2025 May;301(5):108490. doi: 10.1016/j.jbc.2025.108490. Epub 2025 Apr 10.
4
An isofagomine analogue with an amidine group in the 1,6-position.
R Soc Open Sci. 2025 Feb 19;12(2):241877. doi: 10.1098/rsos.241877. eCollection 2025 Feb.
5
Expanding horizons of iminosugars as broad-spectrum anti-virals: mechanism, efficacy and novel developments.
Nat Prod Bioprospect. 2024 Sep 26;14(1):55. doi: 10.1007/s13659-024-00477-5.
7
Development of iminosugar-based glycosidase inhibitors as drug candidates for SARS-CoV-2 virus via molecular modelling and in vitro studies.
J Enzyme Inhib Med Chem. 2024 Dec;39(1):2289007. doi: 10.1080/14756366.2023.2289007. Epub 2023 Dec 12.
9
Recent Progress on Natural α-Glucosidase Inhibitors Derived from the Plants and Microorganisms.
Curr Med Chem. 2025;32(11):2115-2141. doi: 10.2174/0109298673272908231115101520.

本文引用的文献

1
Beyond the vaccines: a glance at the small molecule and peptide-based anti-COVID19 arsenal.
J Biomed Sci. 2022 Sep 6;29(1):65. doi: 10.1186/s12929-022-00847-6.
2
Exploring the Potential of Chemical Inhibitors for Targeting Post-translational Glycosylation of Coronavirus (SARS-CoV-2).
ACS Omega. 2022 Jul 28;7(31):27038-27051. doi: 10.1021/acsomega.2c02345. eCollection 2022 Aug 9.
3
4
Host-targeting oral antiviral drugs to prevent pandemics.
Lancet. 2022 Apr 9;399(10333):1381-1382. doi: 10.1016/S0140-6736(22)00454-8. Epub 2022 Mar 25.
5
UV-4B potently inhibits replication of multiple SARS-CoV-2 strains in clinically relevant human cell lines.
Front Biosci (Landmark Ed). 2022 Jan 5;27(1):3. doi: 10.31083/j.fbl2701003.
6
N-Substituted Valiolamine Derivatives as Potent Inhibitors of Endoplasmic Reticulum α-Glucosidases I and II with Antiviral Activity.
J Med Chem. 2021 Dec 23;64(24):18010-18024. doi: 10.1021/acs.jmedchem.1c01377. Epub 2021 Dec 6.
10
The iminosugars celgosivir, castanospermine and UV-4 inhibit SARS-CoV-2 replication.
Glycobiology. 2021 May 3;31(4):378-384. doi: 10.1093/glycob/cwaa091.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验