Suppr超能文献

利用双能量感知强盗算法进行灾后区域的无人机轨迹优化。

UAV Trajectory Optimization in a Post-Disaster Area Using Dual Energy-Aware Bandits.

机构信息

Department of Electrical and Electronic Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.

Academy for Super Smart Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.

出版信息

Sensors (Basel). 2023 Jan 26;23(3):1402. doi: 10.3390/s23031402.

Abstract

Over the past few years, with the rapid increase in the number of natural disasters, the need to provide smart emergency wireless communication services has become crucial. Unmanned aerial Vehicles (UAVs) have gained much attention as promising candidates due to their unprecedented capabilities and broad flexibility. In this paper, we investigate a UAV-based emergency wireless communication network for a post-disaster area. Our optimization problem aims to optimize the UAV's flight trajectory to maximize the number of visited ground users during the flight period. Then, a dual cost-aware multi-armed bandit algorithm is adopted to tackle this problem under the limited available energy for both the UAV and ground users. Simulation results show that the proposed algorithm could solve the optimization problem and maximize the achievable throughput under these energy constraints.

摘要

在过去的几年中,随着自然灾害数量的快速增加,提供智能应急无线通信服务变得至关重要。由于其前所未有的能力和广泛的灵活性,无人机 (UAV) 成为备受关注的候选者。在本文中,我们研究了一种基于无人机的灾后应急无线通信网络。我们的优化问题旨在优化无人机的飞行轨迹,以在飞行期间最大限度地增加访问的地面用户数量。然后,采用双成本感知多臂老虎机算法来解决在无人机和地面用户可用能量有限的情况下的这个问题。仿真结果表明,所提出的算法可以在这些能量约束下解决优化问题并最大限度地提高可实现的吞吐量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b373/9919222/2dfed156cc45/sensors-23-01402-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验