Suppr超能文献

在具有幅度调制的深部脑刺激闭环模型中有效抑制帕金森病β振荡。

Efficient suppression of parkinsonian beta oscillations in a closed-loop model of deep brain stimulation with amplitude modulation.

作者信息

Bahadori-Jahromi Fatemeh, Salehi Sina, Madadi Asl Mojtaba, Valizadeh Alireza

机构信息

Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.

Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

出版信息

Front Hum Neurosci. 2023 Jan 26;16:1013155. doi: 10.3389/fnhum.2022.1013155. eCollection 2022.

Abstract

INTRODUCTION

Parkinson's disease (PD) is a movement disorder characterized by the pathological beta band (15-30 Hz) neural oscillations within the basal ganglia (BG). It is shown that the suppression of abnormal beta oscillations is correlated with the improvement of PD motor symptoms, which is a goal of standard therapies including deep brain stimulation (DBS). To overcome the stimulation-induced side effects and inefficiencies of conventional DBS (cDBS) and to reduce the administered stimulation current, closed-loop adaptive DBS (aDBS) techniques were developed. In this method, the frequency and/or amplitude of stimulation are modulated based on various disease biomarkers.

METHODS

Here, by computational modeling of a cortico-BG-thalamic network in normal and PD conditions, we show that closed-loop aDBS of the subthalamic nucleus (STN) with amplitude modulation leads to a more effective suppression of pathological beta oscillations within the parkinsonian BG.

RESULTS

Our results show that beta band neural oscillations are restored to their normal range and the reliability of the response of the thalamic neurons to motor cortex commands is retained due to aDBS with amplitude modulation. Furthermore, notably less stimulation current is administered during aDBS compared with cDBS due to a closed-loop control of stimulation amplitude based on the STN local field potential (LFP) beta activity.

DISCUSSION

Efficient models of closed-loop stimulation may contribute to the clinical development of optimized aDBS techniques designed to reduce potential stimulation-induced side effects of cDBS in PD patients while leading to a better therapeutic outcome.

摘要

引言

帕金森病(PD)是一种运动障碍疾病,其特征在于基底神经节(BG)内存在病理性β波段(15 - 30赫兹)神经振荡。研究表明,异常β振荡的抑制与PD运动症状的改善相关,这是包括深部脑刺激(DBS)在内的标准疗法的目标。为了克服传统DBS(cDBS)刺激引起的副作用和效率低下问题,并降低所施加的刺激电流,开发了闭环自适应DBS(aDBS)技术。在这种方法中,刺激的频率和/或幅度基于各种疾病生物标志物进行调制。

方法

在此,通过对正常和PD条件下的皮质 - 基底神经节 - 丘脑网络进行计算建模,我们表明对丘脑底核(STN)进行幅度调制的闭环aDBS能够更有效地抑制帕金森病基底神经节内的病理性β振荡。

结果

我们的结果表明,由于进行了幅度调制的aDBS,β波段神经振荡恢复到正常范围,并且丘脑神经元对运动皮层指令的反应可靠性得以保留。此外,由于基于STN局部场电位(LFP)β活动对刺激幅度进行闭环控制,与cDBS相比,aDBS期间施加的刺激电流明显更少。

讨论

高效的闭环刺激模型可能有助于优化aDBS技术的临床开发,旨在减少PD患者中cDBS潜在的刺激引起的副作用,同时带来更好的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cad/9908610/51a15bac0164/fnhum-16-1013155-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验