Suppr超能文献

利用计算方法估算支架可打印性。

Approximating scaffold printability utilizing computational methods.

机构信息

Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States of America.

Department of Biomedical Engineering, University of Connecticut, Farmington, CT, United States of America.

出版信息

Biofabrication. 2023 Feb 28;15(2). doi: 10.1088/1758-5090/acbbf0.

Abstract

Bioprinting facilitates the generation of complex, three-dimensional (3D), cell-based constructs for various applications. Although multiple bioprinting technologies have been developed, extrusion-based systems have become the dominant technology due to the diversity of materials (bioinks) that can be utilized, either individually or in combination. However, each bioink has unique material properties and extrusion characteristics that affect bioprinting utility, accuracy, and precision. Here, we have extended our previous work to achieve high precision (i.e. repeatability) and printability across samples by optimizing bioink-specific printing parameters. Specifically, we hypothesized that a fuzzy inference system (FIS) could be used as a computational method to address the imprecision in 3D bioprinting test data and uncover the optimal printing parameters for a specific bioink that result in high accuracy and precision. To test this hypothesis, we have implemented a FIS model consisting of four inputs (bioink concentration, printing flow rate, speed, and temperature) and two outputs to quantify the precision (scaffold bioprinted linewidth variance) and printability. We validate our use of the bioprinting precision index with both standard and normalized printability factors. Finally, we utilize optimized printing parameters to bioprint scaffolds containing up to 30 × 10cells mlwith high printability and precision. In total, our results indicate that computational methods are a cost-efficient measure to improve the precision and robustness of extrusion 3D bioprinting.

摘要

生物打印技术有助于生成用于各种应用的复杂、三维(3D)、基于细胞的构建体。尽管已经开发了多种生物打印技术,但由于可以单独或组合使用的材料(生物墨水)的多样性,基于挤出的系统已成为主导技术。然而,每种生物墨水都具有独特的材料特性和挤出特性,这会影响生物打印的实用性、准确性和精度。在这里,我们扩展了之前的工作,通过优化特定于生物墨水的打印参数,实现了跨样本的高精度(即重复性)和可打印性。具体来说,我们假设模糊推理系统(FIS)可以用作一种计算方法来解决 3D 生物打印测试数据中的不精确性,并揭示导致高精度和高精准度的特定生物墨水的最佳打印参数。为了验证这一假设,我们实现了一个由四个输入(生物墨水浓度、打印流速、速度和温度)和两个输出组成的 FIS 模型,以量化精度(支架生物打印线宽方差)和可打印性。我们使用标准和归一化的可打印性因子验证了我们对生物打印精度指数的使用。最后,我们利用优化的打印参数以高可打印性和高精度打印含有高达 30×10cells/ml 的支架。总的来说,我们的结果表明,计算方法是提高挤出 3D 生物打印精度和稳健性的一种具有成本效益的措施。

相似文献

1
Approximating scaffold printability utilizing computational methods.
Biofabrication. 2023 Feb 28;15(2). doi: 10.1088/1758-5090/acbbf0.
2
Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells.
Biofabrication. 2016 Sep 16;8(3):035020. doi: 10.1088/1758-5090/8/3/035020.
4
Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds.
Tissue Eng Part A. 2020 Mar;26(5-6):318-338. doi: 10.1089/ten.TEA.2019.0298.
5
Bioprinting: A focus on improving bioink printability and cell performance based on different process parameters.
Int J Pharm. 2023 Jun 10;640:123020. doi: 10.1016/j.ijpharm.2023.123020. Epub 2023 May 4.
7
Assessment methodologies for extrusion-based bioink printability.
Biofabrication. 2020 Feb 19;12(2):022003. doi: 10.1088/1758-5090/ab6f0d.
8
A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
Acta Biomater. 2019 Sep 1;95:152-164. doi: 10.1016/j.actbio.2019.06.052. Epub 2019 Jul 2.
10
Printability in extrusion bioprinting.
Biofabrication. 2021 Apr 8;13(3). doi: 10.1088/1758-5090/abe7ab.

引用本文的文献

1
Machine Learning in Predicting and Optimizing Polymer Printability for 3D Bioprinting.
Polymers (Basel). 2025 Jul 4;17(13):1873. doi: 10.3390/polym17131873.
2
AI-driven 3D bioprinting for regenerative medicine: From bench to bedside.
Bioact Mater. 2024 Nov 23;45:201-230. doi: 10.1016/j.bioactmat.2024.11.021. eCollection 2025 Mar.

本文引用的文献

1
(Bio)manufactured Solutions for Treatment of Bone Defects with Emphasis on US-FDA Regulatory Science Perspective.
Adv Nanobiomed Res. 2022 Apr;2(4). doi: 10.1002/anbr.202100073. Epub 2022 Jan 5.
2
In situ bioprinting: intraoperative implementation of regenerative medicine.
Trends Biotechnol. 2022 Oct;40(10):1229-1247. doi: 10.1016/j.tibtech.2022.03.009. Epub 2022 Apr 25.
3
Contactless Remote 3D Splinting during COVID-19: Report of Two Patients.
J Hand Surg Asian Pac Vol. 2022 Apr;27(2):398-402. doi: 10.1142/S2424835522720171. Epub 2022 Apr 19.
4
Nanoengineered myogenic scaffolds for skeletal muscle tissue engineering.
Nanoscale. 2022 Jan 20;14(3):797-814. doi: 10.1039/d1nr06143g.
5
Bioinks and Bioprinting Strategies for Skeletal Muscle Tissue Engineering.
Adv Mater. 2022 Mar;34(12):e2105883. doi: 10.1002/adma.202105883. Epub 2022 Feb 3.
6
printing of growth factor-eluting adhesive scaffolds improves wound healing.
Bioact Mater. 2021 Jul 5;8:296-308. doi: 10.1016/j.bioactmat.2021.06.030. eCollection 2022 Feb.
8
In Vivo Printing of Nanoenabled Scaffolds for the Treatment of Skeletal Muscle Injuries.
Adv Healthc Mater. 2021 May;10(10):e2002152. doi: 10.1002/adhm.202002152. Epub 2021 Feb 28.
9
The rheology of direct and suspended extrusion bioprinting.
APL Bioeng. 2021 Feb 4;5(1):011502. doi: 10.1063/5.0031475. eCollection 2021 Mar.
10
Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair.
Tissue Eng Part A. 2021 Jun;27(11-12):679-702. doi: 10.1089/ten.TEA.2020.0350. Epub 2021 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验