Suppr超能文献

无机纳米粒子作为生物正交催化剂的支架。

Inorganic nanoparticles as scaffolds for bioorthogonal catalysts.

机构信息

Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.

Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.

出版信息

Adv Drug Deliv Rev. 2023 Apr;195:114730. doi: 10.1016/j.addr.2023.114730. Epub 2023 Feb 13.

Abstract

Bioorthogonal transition metal catalysts (TMCs) transform therapeutically inactive molecules (pro-drugs) into active drug compounds. Inorganic nanoscaffolds protect and solubilize catalysts while offering a flexible design space for decoration with targeting elements and stimuli-responsive activity. These "drug factories" can activate pro-drugs in situ, localizing treatment to the disease site and minimizing off-target effects. Inorganic nanoscaffolds provide structurally diverse scaffolds for encapsulating TMCs. This ability to define the catalyst environment can be employed to enhance the stability and selectivity of the TMC, providing access to enzyme-like bioorthogonal processes. The use of inorganic nanomaterials as scaffolds TMCs and the use of these bioorthogonal nanozymes in vitro and in vivo applications will be discussed in this review.

摘要

生物正交过渡金属催化剂 (TMCs) 将治疗无效的分子(前药)转化为活性药物化合物。无机纳米支架保护和增溶催化剂,同时为靶向元素和刺激响应活性的装饰提供了灵活的设计空间。这些“药物工厂”可以原位激活前药,将治疗定位在疾病部位,并最大限度地减少脱靶效应。无机纳米支架为封装 TMC 提供了结构多样的支架。这种定义催化剂环境的能力可用于提高 TMC 的稳定性和选择性,从而实现类似酶的生物正交过程。本综述将讨论将无机纳米材料作为支架 TMCs 以及将这些生物正交纳米酶用于体外和体内应用。

相似文献

1
Inorganic nanoparticles as scaffolds for bioorthogonal catalysts.
Adv Drug Deliv Rev. 2023 Apr;195:114730. doi: 10.1016/j.addr.2023.114730. Epub 2023 Feb 13.
2
Nanomaterial-based bioorthogonal nanozymes for biological applications.
Chem Soc Rev. 2021 Dec 13;50(24):13467-13480. doi: 10.1039/d0cs00659a.
3
Degradable ZnS-Supported Bioorthogonal Nanozymes with Enhanced Catalytic Activity for Intracellular Activation of Therapeutics.
J Am Chem Soc. 2022 Jul 20;144(28):12893-12900. doi: 10.1021/jacs.2c04571. Epub 2022 Jul 5.
4
Bioorthogonal nanozymes: an emerging strategy for disease therapy.
Nanoscale. 2022 Dec 22;15(1):41-62. doi: 10.1039/d2nr05920g.
5
Modular Fabrication of Bioorthogonal Nanozymes for Biomedical Applications.
Adv Mater. 2024 Mar;36(10):e2300943. doi: 10.1002/adma.202300943. Epub 2023 Oct 18.
6
In situ activation of therapeutics through bioorthogonal catalysis.
Adv Drug Deliv Rev. 2021 Sep;176:113893. doi: 10.1016/j.addr.2021.113893. Epub 2021 Jul 29.
7
Biodegradable Antibacterial Bioorthogonal Polymeric Nanocatalysts Prepared by Flash Nanoprecipitation.
ACS Appl Mater Interfaces. 2023 Mar 29;15(12):15260-15268. doi: 10.1021/acsami.3c02640. Epub 2023 Mar 15.
8
Bioorthogonal nanozymes for breast cancer imaging and therapy.
J Control Release. 2023 May;357:31-39. doi: 10.1016/j.jconrel.2023.03.032. Epub 2023 Mar 28.
9
Intracellular Activation of Anticancer Therapeutics Using Polymeric Bioorthogonal Nanocatalysts.
Adv Healthc Mater. 2021 Mar;10(5):e2001627. doi: 10.1002/adhm.202001627. Epub 2020 Dec 13.

引用本文的文献

2
Supramolecular Materials and Strategies for Bioorthogonal Chemical Transformations.
Chem Rev. 2025 Aug 13;125(15):7223-7274. doi: 10.1021/acs.chemrev.5c00047. Epub 2025 Aug 1.
3
Gli pathway-targeted Co(iii) Schiff base complexes inhibit migration of basal cell carcinoma cells.
RSC Adv. 2025 Mar 19;15(11):8572-8579. doi: 10.1039/d5ra00326a. eCollection 2025 Mar 17.
4
Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines.
Signal Transduct Target Ther. 2025 Mar 10;10(1):73. doi: 10.1038/s41392-024-02112-8.
5
Exploring New Bioorthogonal Catalysts: Scaffold Diversity in Catalysis for Chemical Biology.
Adv Sci (Weinh). 2025 Mar;12(9):e2404431. doi: 10.1002/advs.202404431. Epub 2025 Feb 7.
8
Potent and Versatile Biogenically Synthesized Alumina/Nickel Oxide Nanocomposite Adsorbent for Defluoridation of Drinking Water.
ACS Omega. 2024 May 23;9(22):23220-23240. doi: 10.1021/acsomega.3c09076. eCollection 2024 Jun 4.
9
Interplay of chloride levels and palladium(ii)-catalyzed -deallenylation bioorthogonal uncaging reactions.
Chem Sci. 2024 Feb 16;15(12):4458-4465. doi: 10.1039/d3sc06408e. eCollection 2024 Mar 20.
10
Modulation of Gold Nanoparticle Ligand Structure-Dynamic Relationships Probed Using Solution NMR.
ACS Nanosci Au. 2023 Nov 8;4(1):62-68. doi: 10.1021/acsnanoscienceau.3c00042. eCollection 2024 Feb 21.

本文引用的文献

1
Bioorthogonal nanozymes: an emerging strategy for disease therapy.
Nanoscale. 2022 Dec 22;15(1):41-62. doi: 10.1039/d2nr05920g.
2
NIR-II Light Leveraged Dual Drug Synthesis for Orthotopic Combination Therapy.
ACS Nano. 2022 Dec 27;16(12):20353-20363. doi: 10.1021/acsnano.2c06314. Epub 2022 Nov 18.
3
A Motor-Based Carbonaceous Nanocalabash Catalyst for Deep-Layered Bioorthogonal Chemistry.
J Am Chem Soc. 2022 Oct 26;144(42):19611-19618. doi: 10.1021/jacs.2c09599. Epub 2022 Oct 14.
4
5
Macrophage-Encapsulated Bioorthogonal Nanozymes for Targeting Cancer Cells.
JACS Au. 2022 Jul 7;2(7):1679-1685. doi: 10.1021/jacsau.2c00247. eCollection 2022 Jul 25.
6
Degradable ZnS-Supported Bioorthogonal Nanozymes with Enhanced Catalytic Activity for Intracellular Activation of Therapeutics.
J Am Chem Soc. 2022 Jul 20;144(28):12893-12900. doi: 10.1021/jacs.2c04571. Epub 2022 Jul 5.
7
Nano-bio interactions of 2D molybdenum disulfide.
Adv Drug Deliv Rev. 2022 Aug;187:114361. doi: 10.1016/j.addr.2022.114361. Epub 2022 May 27.
9
Strategies of engineering nanomedicines for tumor retention.
J Control Release. 2022 Jun;346:193-211. doi: 10.1016/j.jconrel.2022.04.006. Epub 2022 Apr 23.
10
Multifunctional DNAzyme-Anchored Metal-Organic Framework for Efficient Suppression of Tumor Metastasis.
ACS Nano. 2022 Apr 26;16(4):5404-5417. doi: 10.1021/acsnano.1c09008. Epub 2022 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验