Mukherjee Soumyajit, Das Shubhojit, Bedi Minakshi, Vadupu Lavanya, Ball Writoban Basu, Ghosh Alok
Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata Pin-700019, India.
Department of the Biological Sciences, SRM University- AP, Andhra Pradesh Pin- 522240, India.
Biochim Biophys Acta Gen Subj. 2023 May;1867(5):130328. doi: 10.1016/j.bbagen.2023.130328. Epub 2023 Feb 13.
Human MPV17, an evolutionarily conserved mitochondrial inner-membrane channel protein, accounts for the tissue-specific mitochondrial DNA depletion syndrome. However, the precise molecular function of the MPV17 protein is still elusive. Previous studies showed that the mitochondrial morphology and cristae organization are severely disrupted in the MPV17 knockout cells from yeast, zebrafish, and mammalian tissues. As mitochondrial cristae morphology is strictly regulated by the membrane phospholipids composition, we measured mitochondrial membrane phospholipids (PLs) levels in yeast Saccharomyces cerevisiae MPV17 ortholog, SYM1 (Stress-inducible Yeast MPV17) deleted cells. We found that Sym1 knockout decreases the mitochondrial membrane PL, phosphatidyl ethanolamine (PE), and inhibits respiratory growth at 37 ̊C on rich media. Both the oxygen consumption rate and the steady state expressions of mitochondrial complex II and super-complexes are compromised. Apart from mitochondrial PE defect a significant depletion of mitochondrial phosphatidyl-choline (PC) was noticed in the sym1∆ cells grown on synthetic media at both 30 ̊C and 37 ̊C temperatures. Surprisingly, exogenous supplementation of methylglyoxal (MG), an intrinsic side product of glycolysis, rescues the respiratory growth of Sym1 deficient yeast cells. Using a combination of molecular biology and lipid biochemistry, we uncovered that MG simultaneously restores both the mitochondrial PE/PC levels and the respiration by enhancing cytosolic NAD-dependent glycerol-3-phosphate dehydrogenase 1 (Gpd1) enzymatic activity. Further, MG is incapable to restore respiratory growth of the sym1∆gpd1∆ double knockout cells. Thus, our work provides Gpd1 activation as a novel strategy for combating Sym1 deficiency and PC/PE defects.
人类MPV17是一种进化上保守的线粒体内膜通道蛋白,与组织特异性线粒体DNA耗竭综合征有关。然而,MPV17蛋白的确切分子功能仍不清楚。先前的研究表明,酵母、斑马鱼和哺乳动物组织的MPV17基因敲除细胞中线粒体形态和嵴的组织受到严重破坏。由于线粒体嵴的形态受到膜磷脂组成的严格调控,我们测定了酿酒酵母中MPV17直系同源物SYM1(应激诱导酵母MPV17)缺失细胞中的线粒体膜磷脂(PLs)水平。我们发现Sym1基因敲除会降低线粒体膜PL、磷脂酰乙醇胺(PE),并抑制在丰富培养基上37℃时的呼吸生长。氧消耗率以及线粒体复合物II和超复合物的稳态表达均受到影响。除了线粒体PE缺陷外,在30℃和37℃温度下在合成培养基上生长的sym1∆细胞中还发现线粒体磷脂酰胆碱(PC)显著减少。令人惊讶的是,糖酵解的内在副产物甲基乙二醛(MG)的外源补充挽救了Sym1缺陷酵母细胞的呼吸生长。通过结合分子生物学和脂质生物化学,我们发现MG通过增强胞质NAD依赖性甘油-3-磷酸脱氢酶1(Gpd1)的酶活性,同时恢复线粒体PE/PC水平和呼吸作用。此外,MG无法恢复sym1∆gpd1∆双基因敲除细胞的呼吸生长。因此,我们的工作提供了激活Gpd1作为对抗Sym1缺陷和PC/PE缺陷的新策略。