Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA.
Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
Metab Eng. 2023 Mar;76:193-203. doi: 10.1016/j.ymben.2023.02.006. Epub 2023 Feb 15.
Deciphering the mechanisms of bacterial fatty acid biosynthesis is crucial for both the engineering of bacterial hosts to produce fatty acid-derived molecules and the development of new antibiotics. However, gaps in our understanding of the initiation of fatty acid biosynthesis remain. Here, we demonstrate that the industrially relevant microbe Pseudomonas putida KT2440 contains three distinct pathways to initiate fatty acid biosynthesis. The first two routes employ conventional β-ketoacyl-ACP synthase III enzymes, FabH1 and FabH2, that accept short- and medium-chain-length acyl-CoAs, respectively. The third route utilizes a malonyl-ACP decarboxylase enzyme, MadB. A combination of exhaustive in vivo alanine-scanning mutagenesis, in vitro biochemical characterization, X-ray crystallography, and computational modeling elucidate the presumptive mechanism of malonyl-ACP decarboxylation via MadB. Given that functional homologs of MadB are widespread throughout domain Bacteria, this ubiquitous alternative fatty acid initiation pathway provides new opportunities to target a range of biotechnology and biomedical applications.
解析细菌脂肪酸生物合成的机制对于工程菌生产脂肪酸衍生分子和开发新型抗生素都至关重要。然而,我们对脂肪酸生物合成起始的理解仍存在空白。在这里,我们证明了具有工业相关性的微生物 Pseudomonas putida KT2440 包含三种不同的起始脂肪酸生物合成途径。前两条途径分别采用传统的β-酮酰-ACP 合酶 III 酶 FabH1 和 FabH2,它们分别接受短链和中链长度的酰基辅酶 A。第三条途径利用丙二酰-ACP 脱羧酶 MadB。通过彻底的体内丙氨酸扫描诱变、体外生化特性分析、X 射线晶体学和计算建模,阐明了 MadB 介导的丙二酰-ACP 脱羧的假定机制。鉴于 MadB 的功能同源物广泛存在于细菌域,这种普遍存在的替代脂肪酸起始途径为生物技术和生物医学应用的一系列目标提供了新的机会。