Suppr超能文献

基于 A-PoD 的超分辨率 SRS 显微镜技术

Super-resolution SRS microscopy with A-PoD.

机构信息

Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.

School of Medicine, University of California, Irvine, CA, USA.

出版信息

Nat Methods. 2023 Mar;20(3):448-458. doi: 10.1038/s41592-023-01779-1. Epub 2023 Feb 16.

Abstract

Stimulated Raman scattering (SRS) offers the ability to image metabolic dynamics with high signal-to-noise ratio. However, its spatial resolution is limited by the numerical aperture of the imaging objective and the scattering cross-section of molecules. To achieve super-resolved SRS imaging, we developed a deconvolution algorithm, adaptive moment estimation (Adam) optimization-based pointillism deconvolution (A-PoD) and demonstrated a spatial resolution of lower than 59 nm on the membrane of a single lipid droplet (LD). We applied A-PoD to spatially correlated multiphoton fluorescence imaging and deuterium oxide (DO)-probed SRS (DO-SRS) imaging from diverse samples to compare nanoscopic distributions of proteins and lipids in cells and subcellular organelles. We successfully differentiated newly synthesized lipids in LDs using A-PoD-coupled DO-SRS. The A-PoD-enhanced DO-SRS imaging method was also applied to reveal metabolic changes in brain samples from Drosophila on different diets. This new approach allows us to quantitatively measure the nanoscopic colocalization of biomolecules and metabolic dynamics in organelles.

摘要

受激拉曼散射(SRS)能够以高信噪比成像代谢动力学。然而,其空间分辨率受到成像物镜的数值孔径和分子的散射截面的限制。为了实现超分辨 SRS 成像,我们开发了一种去卷积算法,基于自适应矩估计(Adam)优化的点画去卷积(A-PoD),并在单个脂质滴(LD)的膜上证明了低于 59nm 的空间分辨率。我们将 A-PoD 应用于空间相关的多光子荧光成像和氘代水(DO)探测的受激拉曼散射(DO-SRS)成像,以比较细胞和亚细胞器中蛋白质和脂质的纳米级分布。我们成功地使用 A-PoD 耦合的 DO-SRS 区分了 LD 中合成的新脂质。该 A-PoD 增强的 DO-SRS 成像方法还应用于揭示不同饮食的果蝇脑组织样本中的代谢变化。这种新方法使我们能够定量测量细胞器中生物分子和代谢动力学的纳米级共定位。

相似文献

1
Super-resolution SRS microscopy with A-PoD.
Nat Methods. 2023 Mar;20(3):448-458. doi: 10.1038/s41592-023-01779-1. Epub 2023 Feb 16.
3
Super-Resolution Vibrational Imaging Using Expansion Stimulated Raman Scattering Microscopy.
Adv Sci (Weinh). 2022 Jul;9(20):e2200315. doi: 10.1002/advs.202200315. Epub 2022 May 6.
4
Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy.
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11226-31. doi: 10.1073/pnas.1303768110. Epub 2013 Jun 24.
5
Stimulated Raman Scattering Imaging Sheds New Light on Lipid Droplet Biology.
J Phys Chem B. 2023 Mar 23;127(11):2381-2394. doi: 10.1021/acs.jpcb.3c00038. Epub 2023 Mar 10.
6
Label-free imaging of lipid dynamics using Coherent Anti-stokes Raman Scattering (CARS) and Stimulated Raman Scattering (SRS) microscopy.
Curr Opin Genet Dev. 2011 Oct;21(5):585-90. doi: 10.1016/j.gde.2011.09.003. Epub 2011 Sep 22.
8
Label-free biomedical imaging of lipids by stimulated Raman scattering microscopy.
Curr Protoc Mol Biol. 2015 Jan 5;109:30.3.1-30.3.17. doi: 10.1002/0471142727.mb3003s109.
9
Multi-molecular hyperspectral PRM-SRS microscopy.
Nat Commun. 2024 Feb 21;15(1):1599. doi: 10.1038/s41467-024-45576-6.
10
Spatial light-modulated stimulated Raman scattering (SLM-SRS) microscopy for rapid multiplexed vibrational imaging.
Theranostics. 2020 Jan 1;10(1):312-322. doi: 10.7150/thno.38551. eCollection 2020.

引用本文的文献

1
Principle of Stimulated Raman Scattering Microscopy: Emerging at High Spatiotemporal Limits.
J Phys Chem C Nanomater Interfaces. 2025 Mar 27;129(12):5789-5797. doi: 10.1021/acs.jpcc.5c00655. Epub 2025 Mar 13.
2
Quantum theory of stimulated Raman scattering microscopy.
Chem Phys Rev. 2025 Jun;6(2):021306. doi: 10.1063/5.0248085. Epub 2025 May 27.
3
Gentle Label-Free Nonlinear Optical Imaging Relaxes Linear-Absorption-Mediated Triplet.
Adv Sci (Weinh). 2025 Aug;12(32):e15648. doi: 10.1002/advs.202415648. Epub 2025 May 28.
4
Optical imaging of metabolic dynamics in ALS under methionine regulation.
J Biomed Opt. 2025 Feb;30(Suppl 2):S23906. doi: 10.1117/1.JBO.30.S2.S23906. Epub 2025 May 24.
5
Unlocking in vivo metabolic insights with vibrational microscopy.
Nat Methods. 2025 May;22(5):886-889. doi: 10.1038/s41592-025-02616-3.
6
Protein lipidation in the tumor microenvironment: enzymology, signaling pathways, and therapeutics.
Mol Cancer. 2025 May 7;24(1):138. doi: 10.1186/s12943-025-02309-7.
7
Single-Frame Vignetting Correction for Post-Stitched-Tile Imaging Using VISTAmap.
Nanomaterials (Basel). 2025 Apr 7;15(7):563. doi: 10.3390/nano15070563.
8
Computational Super-Resolution: An Odyssey in Harnessing Priors to Enhance Optical Microscopy Resolution.
Anal Chem. 2025 Mar 11;97(9):4763-4792. doi: 10.1021/acs.analchem.4c07047. Epub 2025 Feb 27.
9
Innovations in aging biology: highlights from the ARDD emerging science & technologies workshop.
NPJ Aging. 2025 Feb 18;11(1):8. doi: 10.1038/s41514-025-00193-5.
10
Rapid Wide-Field Correlative Mapping of Electronic and Vibrational Ultrafast Dynamics in Solids.
ACS Nano. 2025 Feb 25;19(7):7064-7074. doi: 10.1021/acsnano.4c15397. Epub 2025 Feb 10.

本文引用的文献

1
Direct Imaging of Lipid Metabolic Changes in Ovary During Aging Using DO-SRS Microscopy.
Front Aging. 2022 Feb 3;2:819903. doi: 10.3389/fragi.2021.819903. eCollection 2021.
2
Imaging Sub-Cellular Methionine and Insulin Interplay in Triple Negative Breast Cancer Lipid Droplet Metabolism.
Front Oncol. 2022 Mar 10;12:858017. doi: 10.3389/fonc.2022.858017. eCollection 2022.
3
DO-SRS imaging of diet regulated metabolic activities in Drosophila during aging processes.
Aging Cell. 2022 Apr;21(4):e13586. doi: 10.1111/acel.13586. Epub 2022 Mar 7.
4
Visualizing Cancer Cell Metabolic Dynamics Regulated With Aromatic Amino Acids Using DO-SRS and 2PEF Microscopy.
Front Mol Biosci. 2021 Dec 15;8:779702. doi: 10.3389/fmolb.2021.779702. eCollection 2021.
5
DO-SRS imaging of metabolic dynamics in aging .
Analyst. 2021 Dec 6;146(24):7510-7519. doi: 10.1039/d1an01638e.
7
Super-resolution label-free volumetric vibrational imaging.
Nat Commun. 2021 Jun 15;12(1):3648. doi: 10.1038/s41467-021-23951-x.
8
Switchable stimulated Raman scattering microscopy with photochromic vibrational probes.
Nat Commun. 2021 May 25;12(1):3089. doi: 10.1038/s41467-021-23407-2.
9
Super-resolution vibrational microscopy by stimulated Raman excited fluorescence.
Light Sci Appl. 2021 Apr 20;10(1):87. doi: 10.1038/s41377-021-00518-5.
10
Mapping the Intratumoral Heterogeneity in Glioblastomas with Hyperspectral Stimulated Raman Scattering Microscopy.
Anal Chem. 2021 Feb 2;93(4):2377-2384. doi: 10.1021/acs.analchem.0c04262. Epub 2021 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验