Suppr超能文献

利用石英晶体微天平能量耗散监测研究模型有机表面的三维细菌附着方式。

Investigation of Three-Dimensional Bacterial Adhesion Manner on Model Organic Surfaces Using Quartz Crystal Microbalance with Energy Dissipation Monitoring.

机构信息

Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan.

School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.

出版信息

ACS Appl Bio Mater. 2023 Mar 20;6(3):1185-1194. doi: 10.1021/acsabm.2c01012. Epub 2023 Feb 20.

Abstract

Bacterial biofilms reduce the performance and efficiency of biomedical and industrial devices. The initial step in forming bacterial biofilms is the weak and reversible attachment of the bacterial cells onto the surface. This is followed by bond maturation and secretion of polymeric substances, which initiate irreversible biofilm formation, resulting in stable biofilms. This implies that understanding the initial reversible stage of the adhesion process is crucial to prevent bacterial biofilm formation. In this study, we analyzed the adhesion processes of on self-assembled monolayers (SAMs) with different terminal groups using optical microscopy and quartz crystal microbalance with energy dissipation (QCM-D) monitoring. We found that a considerable number of bacterial cells adhere to hydrophobic (methyl-terminated) and hydrophilic protein-adsorbing (amine- and carboxy-terminated) SAMs forming dense bacterial adlayers while attaching weakly to hydrophilic protein-resisting SAMs [oligo(ethylene glycol) (OEG) and sulfobetaine (SB)], forming sparse but dissipative bacterial adlayers. Moreover, we observed positive shifts in the resonant frequency for the hydrophilic protein-resisting SAMs at high overtone numbers, suggesting how bacterial cells cling to the surface using their appendages as explained by the coupled-resonator model. By exploiting the differences in the acoustic wave penetration depths at each overtone, we estimated the distance of the bacterial cell body from different surfaces. The estimated distances provide a possible explanation for why bacterial cells tend to attach firmly to some surfaces and weakly to others. This result is correlated to the strength of the bacterium-substratum bonds at the interface. Elucidating how the bacterial cells adhere to different surface chemistries can be a suitable guide in identifying surfaces with a more significant probability of contamination by bacterial biofilms and designing bacteria-resistant surfaces and coatings with excellent bacterial antifouling characteristics.

摘要

细菌生物膜会降低生物医学和工业设备的性能和效率。形成细菌生物膜的初始步骤是细菌细胞弱且可逆地附着在表面上。接着是键的成熟和聚合物物质的分泌,这会启动不可逆的生物膜形成,导致稳定的生物膜。这意味着了解粘附过程的初始可逆阶段对于防止细菌生物膜的形成至关重要。在这项研究中,我们使用光学显微镜和石英晶体微天平(QCM-D)监测分析了不同末端基团的自组装单层(SAM)上的粘附过程。我们发现相当数量的细菌细胞附着在疏水性(甲基末端)和亲水性蛋白吸附(氨基和羧基末端)SAM 上,形成密集的细菌附着层,而弱附着在亲水性蛋白抵抗 SAM [聚(乙二醇)(OEG)和磺基甜菜碱(SB)]上,形成稀疏但耗散的细菌附着层。此外,我们观察到在高倍频数下,亲水性蛋白抵抗 SAM 的共振频率发生正向偏移,这表明了细菌细胞如何利用其附属物附着在表面上,这正如耦合谐振器模型所解释的那样。通过利用每个倍频的声波穿透深度的差异,我们估计了细菌细胞主体与不同表面的距离。估计的距离为为什么细菌细胞倾向于牢固地附着在某些表面而弱附着在其他表面提供了可能的解释。这一结果与界面处细菌-基质键的强度有关。阐明细菌细胞如何附着在不同的表面化学性质上,可以为识别更有可能被细菌生物膜污染的表面以及设计具有优异细菌抗污特性的抗细菌表面和涂层提供合适的指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验